A ternary model of proton therapy based on boron medium radiosensitization and enhancement paths: a Monte Carlo simulation
BackgroundTo overcome proton therapy limitations [low linear energy transfer (LET) radiation with a relative biological effectiveness (RBE) typically ranging from 1.1 to 1.2], radiosensitization techniques can be employed to increase the radiosensitivity of tumor cells and improve the effectiveness...
Gespeichert in:
Veröffentlicht in: | Translational cancer research 2023-10, Vol.12 (10), p.2545-2555 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BackgroundTo overcome proton therapy limitations [low linear energy transfer (LET) radiation with a relative biological effectiveness (RBE) typically ranging from 1.1 to 1.2], radiosensitization techniques can be employed to increase the radiosensitivity of tumor cells and improve the effectiveness of radiation therapy. In this study, we suggest using a boron-based medium to overcome the biological limitations of proton therapy. By inducing the hydrogen-boron fusion reaction (p + 11B → 3α) of incident protons and capturing thermal neutrons [10B + n → 7Li3+ (0.84 MeV) + 4He2+ (1.47 MeV) + γ (0.477 MeV)], high LET α particles can be released. We propose a "ternary" radiotherapy model to enhance the biological effect of proton therapy.MethodsUsing Monte Carlo simulation, the possibility of interacting low-energy proton beams with 11B and thermal neutrons with 10B to produce α particles with higher RBE to enhance the biological effect of proton radiotherapy were investigated. And the number and location of α particles and thermal neutrons produced by the interaction of protons with natural boron had also been studied.ResultsUnder the basic principle of the "ternary" radiotherapy model, comparative analyses of neutrons and α particles produced by proton beams of different energies incident on the phantoms, which were composed of boron isotopes of different concentrations in proportion to the phantoms, have shown that the α particle yield decreased with decreasing boron doping concentration, whereas the neutron yield increased with decreasing boron doping concentration. The distribution of thermal neutrons and α particles in the longitudinal direction of the proton beam were also studied, and it was found that the number of α particles produced was high at high boron concentrations, and the locations of α and thermal neutrons were close to the treatment target.ConclusionsThe proton therapy ternary model is theoretically feasible from the perspective of mathematical analysis and Monte Carlo simulation experiments. |
---|---|
ISSN: | 2218-676X 2219-6803 |
DOI: | 10.21037/tcr-23-1107 |