Enhanced performance of molecular electrocatalysts for CO2 reduction in a flow cell following K+ addition

Electrocatalytic CO2 reduction is a key aspect of artificial photosynthesis systems designed to produce fuels. Although some molecular catalysts have good performance for CO2 reduction, these compounds also suffer from poor durability and energy efficiency. The present work demonstrates the improved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-11, Vol.9 (45), p.eadh9986-eadh9986
Hauptverfasser: Sato, Shunsuke, Sekizawa, Keita, Shirai, Soichi, Sakamoto, Naonari, Morikawa, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrocatalytic CO2 reduction is a key aspect of artificial photosynthesis systems designed to produce fuels. Although some molecular catalysts have good performance for CO2 reduction, these compounds also suffer from poor durability and energy efficiency. The present work demonstrates the improved CO2 reduction activity exhibited by molecular catalysts in a flow cell. These catalysts were composed of a cobalt-tetrapyridino-porphyrazine complex supported on carbon black together with potassium salt and were both stable and efficient. These systems were found to promote electrocatalytic CO2 reduction with a current density of 100 mA/cm2 and generated CO over at least 1 week with a selectivity of approximately 95%. The optimal catalyst gave a turnover number of 3,800,000 and an energy conversion efficiency of more than 62% even at 200 mA/cm2.
ISSN:2375-2548
DOI:10.1126/sciadv.adh9986