ToxR activates the Vibrio cholerae virulence genes by tethering DNA to the membrane through versatile binding to multiple sites

ToxR, a transmembrane one-component signal transduction factor, lies within a regulatory cascade that results in the expression of ToxT, toxin coregulated pilus, and cholera toxin. While ToxR has been extensively studied for its ability to activate or repress various genes in , here we present the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-07, Vol.120 (29), p.e2304378120-e2304378120
Hauptverfasser: Canals, Albert, Pieretti, Simone, Muriel-Masanes, Mireia, El Yaman, Nour, Plecha, Sarah C, Thomson, Joshua J, Fàbrega-Ferrer, Montserrat, Pérez-Luque, Rosa, Krukonis, Eric S, Coll, Miquel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ToxR, a transmembrane one-component signal transduction factor, lies within a regulatory cascade that results in the expression of ToxT, toxin coregulated pilus, and cholera toxin. While ToxR has been extensively studied for its ability to activate or repress various genes in , here we present the crystal structures of the ToxR cytoplasmic domain bound to DNA at the and promoters. The structures confirm some predicted interactions, yet reveal other unexpected promoter interactions with implications for other potential regulatory roles for ToxR. We show that ToxR is a versatile virulence regulator that recognizes diverse and extensive, eukaryotic-like regulatory DNA sequences, that relies more on DNA structural elements than specific sequences for binding. Using this topological DNA recognition mechanism, ToxR can bind both in tandem and in a twofold inverted-repeat-driven manner. Its regulatory action is based on coordinated multiple binding to promoter regions near the transcription start site, which can remove the repressing H-NS proteins and prepares the DNA for optimal interaction with the RNA polymerase.
ISSN:0027-8424
1091-6490
DOI:10.1073/PNAS.2304378120