Many-Exciton Quantum Dynamics in a Ruddlesden–Popper Tin Iodide

We present a study on the many-body exciton interactions in a Ruddlesden–Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-11, Vol.127 (43), p.21194-21203
Hauptverfasser: Rojas-Gatjens, Esteban, Li, Hao, Vega-Flick, Alejandro, Cortecchia, Daniele, Petrozza, Annamaria, Bittner, Eric R., Srimath Kandada, Ajay Ram, Silva-Acuña, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21203
container_issue 43
container_start_page 21194
container_title Journal of physical chemistry. C
container_volume 127
creator Rojas-Gatjens, Esteban
Li, Hao
Vega-Flick, Alejandro
Cortecchia, Daniele
Petrozza, Annamaria
Bittner, Eric R.
Srimath Kandada, Ajay Ram
Silva-Acuña, Carlos
description We present a study on the many-body exciton interactions in a Ruddlesden–Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys. 2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (
doi_str_mv 10.1021/acs.jpcc.3c04896
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10626601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887475670</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-1e9f16e40cdddf4f264a54b53b6715f56029203abc3bd3d6833759b72e6c330c3</originalsourceid><addsrcrecordid>eNp1UctOwzAQtBBIlMKdY8SJAyl-OzkhBOUhFfFQOVuO7YBRYoc4QfTGP_CHfAkprZA4cNqVZmZ3ZweAfQQnCGJ0rHScvDRaT4iGNMv5BhihnOBUUMY2f3sqtsFOjC8QMgIRGYHTG-UX6fRduy745L5Xvuvr5HzhVe10TJxPVPLQG1PZaKz_-vi8C01j22Q-INfBOGN3wVapqmj31nUMHi-m87OrdHZ7eX12OksVJVmXIpuXiFsKtTGmpCXmVDFaMFJwgVjJOMQ5hkQVmhSGGJ4RIlheCGy5JgRqMgYnq7lNX9TWaOu7VlWyaV2t2oUMysm_iHfP8im8SQQ55nxwOwYHqwkhdk7GwbLVzzp4b3UnMeU5H740BofrNW147W3sZO2itlWlvA19lDjLBBWMCzhQ4Yqq2xBja8vfYxCUy1DkEIpchiLXoQySo5XkBwl964eX_U__BuMFkSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887475670</pqid></control><display><type>article</type><title>Many-Exciton Quantum Dynamics in a Ruddlesden–Popper Tin Iodide</title><source>American Chemical Society Journals</source><creator>Rojas-Gatjens, Esteban ; Li, Hao ; Vega-Flick, Alejandro ; Cortecchia, Daniele ; Petrozza, Annamaria ; Bittner, Eric R. ; Srimath Kandada, Ajay Ram ; Silva-Acuña, Carlos</creator><creatorcontrib>Rojas-Gatjens, Esteban ; Li, Hao ; Vega-Flick, Alejandro ; Cortecchia, Daniele ; Petrozza, Annamaria ; Bittner, Eric R. ; Srimath Kandada, Ajay Ram ; Silva-Acuña, Carlos ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We present a study on the many-body exciton interactions in a Ruddlesden–Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys. 2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (&lt;10 meV) not observed in the lead system. We model the lineshapes based on a stochastic scattering theory that accounts for the interaction with a nonstationary population of dark background excitations. Our study provides evidence of differences in the exciton quantum dynamics between tin- and lead-based Ruddlesden–Popper metal halides (RPMHs) and links them to the exciton–exciton interaction strength and the static disorder aspect of the crystalline structure.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c04896</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials ; Chemistry ; Materials Science ; Science &amp; Technology - Other Topics</subject><ispartof>Journal of physical chemistry. C, 2023-11, Vol.127 (43), p.21194-21203</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-1e9f16e40cdddf4f264a54b53b6715f56029203abc3bd3d6833759b72e6c330c3</citedby><cites>FETCH-LOGICAL-a438t-1e9f16e40cdddf4f264a54b53b6715f56029203abc3bd3d6833759b72e6c330c3</cites><orcidid>0000-0001-6914-4537 ; 0000-0002-4234-7753 ; 0000-0001-8623-9191 ; 0000-0002-0775-9664 ; 0000-0002-7420-1150 ; 0000-0001-9408-9621 ; 0000-0002-3969-5271 ; 0000000242347753 ; 0000000194089621 ; 0000000207759664 ; 0000000186239191 ; 0000000169144537 ; 0000000274201150 ; 0000000239695271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.3c04896$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c04896$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2469619$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rojas-Gatjens, Esteban</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Vega-Flick, Alejandro</creatorcontrib><creatorcontrib>Cortecchia, Daniele</creatorcontrib><creatorcontrib>Petrozza, Annamaria</creatorcontrib><creatorcontrib>Bittner, Eric R.</creatorcontrib><creatorcontrib>Srimath Kandada, Ajay Ram</creatorcontrib><creatorcontrib>Silva-Acuña, Carlos</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Many-Exciton Quantum Dynamics in a Ruddlesden–Popper Tin Iodide</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We present a study on the many-body exciton interactions in a Ruddlesden–Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys. 2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (&lt;10 meV) not observed in the lead system. We model the lineshapes based on a stochastic scattering theory that accounts for the interaction with a nonstationary population of dark background excitations. Our study provides evidence of differences in the exciton quantum dynamics between tin- and lead-based Ruddlesden–Popper metal halides (RPMHs) and links them to the exciton–exciton interaction strength and the static disorder aspect of the crystalline structure.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><subject>Chemistry</subject><subject>Materials Science</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UctOwzAQtBBIlMKdY8SJAyl-OzkhBOUhFfFQOVuO7YBRYoc4QfTGP_CHfAkprZA4cNqVZmZ3ZweAfQQnCGJ0rHScvDRaT4iGNMv5BhihnOBUUMY2f3sqtsFOjC8QMgIRGYHTG-UX6fRduy745L5Xvuvr5HzhVe10TJxPVPLQG1PZaKz_-vi8C01j22Q-INfBOGN3wVapqmj31nUMHi-m87OrdHZ7eX12OksVJVmXIpuXiFsKtTGmpCXmVDFaMFJwgVjJOMQ5hkQVmhSGGJ4RIlheCGy5JgRqMgYnq7lNX9TWaOu7VlWyaV2t2oUMysm_iHfP8im8SQQ55nxwOwYHqwkhdk7GwbLVzzp4b3UnMeU5H740BofrNW147W3sZO2itlWlvA19lDjLBBWMCzhQ4Yqq2xBja8vfYxCUy1DkEIpchiLXoQySo5XkBwl964eX_U__BuMFkSg</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Rojas-Gatjens, Esteban</creator><creator>Li, Hao</creator><creator>Vega-Flick, Alejandro</creator><creator>Cortecchia, Daniele</creator><creator>Petrozza, Annamaria</creator><creator>Bittner, Eric R.</creator><creator>Srimath Kandada, Ajay Ram</creator><creator>Silva-Acuña, Carlos</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6914-4537</orcidid><orcidid>https://orcid.org/0000-0002-4234-7753</orcidid><orcidid>https://orcid.org/0000-0001-8623-9191</orcidid><orcidid>https://orcid.org/0000-0002-0775-9664</orcidid><orcidid>https://orcid.org/0000-0002-7420-1150</orcidid><orcidid>https://orcid.org/0000-0001-9408-9621</orcidid><orcidid>https://orcid.org/0000-0002-3969-5271</orcidid><orcidid>https://orcid.org/0000000242347753</orcidid><orcidid>https://orcid.org/0000000194089621</orcidid><orcidid>https://orcid.org/0000000207759664</orcidid><orcidid>https://orcid.org/0000000186239191</orcidid><orcidid>https://orcid.org/0000000169144537</orcidid><orcidid>https://orcid.org/0000000274201150</orcidid><orcidid>https://orcid.org/0000000239695271</orcidid></search><sort><creationdate>20231102</creationdate><title>Many-Exciton Quantum Dynamics in a Ruddlesden–Popper Tin Iodide</title><author>Rojas-Gatjens, Esteban ; Li, Hao ; Vega-Flick, Alejandro ; Cortecchia, Daniele ; Petrozza, Annamaria ; Bittner, Eric R. ; Srimath Kandada, Ajay Ram ; Silva-Acuña, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-1e9f16e40cdddf4f264a54b53b6715f56029203abc3bd3d6833759b72e6c330c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><topic>Chemistry</topic><topic>Materials Science</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas-Gatjens, Esteban</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Vega-Flick, Alejandro</creatorcontrib><creatorcontrib>Cortecchia, Daniele</creatorcontrib><creatorcontrib>Petrozza, Annamaria</creatorcontrib><creatorcontrib>Bittner, Eric R.</creatorcontrib><creatorcontrib>Srimath Kandada, Ajay Ram</creatorcontrib><creatorcontrib>Silva-Acuña, Carlos</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas-Gatjens, Esteban</au><au>Li, Hao</au><au>Vega-Flick, Alejandro</au><au>Cortecchia, Daniele</au><au>Petrozza, Annamaria</au><au>Bittner, Eric R.</au><au>Srimath Kandada, Ajay Ram</au><au>Silva-Acuña, Carlos</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Many-Exciton Quantum Dynamics in a Ruddlesden–Popper Tin Iodide</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-11-02</date><risdate>2023</risdate><volume>127</volume><issue>43</issue><spage>21194</spage><epage>21203</epage><pages>21194-21203</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We present a study on the many-body exciton interactions in a Ruddlesden–Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys. 2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (&lt;10 meV) not observed in the lead system. We model the lineshapes based on a stochastic scattering theory that accounts for the interaction with a nonstationary population of dark background excitations. Our study provides evidence of differences in the exciton quantum dynamics between tin- and lead-based Ruddlesden–Popper metal halides (RPMHs) and links them to the exciton–exciton interaction strength and the static disorder aspect of the crystalline structure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c04896</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6914-4537</orcidid><orcidid>https://orcid.org/0000-0002-4234-7753</orcidid><orcidid>https://orcid.org/0000-0001-8623-9191</orcidid><orcidid>https://orcid.org/0000-0002-0775-9664</orcidid><orcidid>https://orcid.org/0000-0002-7420-1150</orcidid><orcidid>https://orcid.org/0000-0001-9408-9621</orcidid><orcidid>https://orcid.org/0000-0002-3969-5271</orcidid><orcidid>https://orcid.org/0000000242347753</orcidid><orcidid>https://orcid.org/0000000194089621</orcidid><orcidid>https://orcid.org/0000000207759664</orcidid><orcidid>https://orcid.org/0000000186239191</orcidid><orcidid>https://orcid.org/0000000169144537</orcidid><orcidid>https://orcid.org/0000000274201150</orcidid><orcidid>https://orcid.org/0000000239695271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-11, Vol.127 (43), p.21194-21203
issn 1932-7447
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10626601
source American Chemical Society Journals
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
Chemistry
Materials Science
Science & Technology - Other Topics
title Many-Exciton Quantum Dynamics in a Ruddlesden–Popper Tin Iodide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Many-Exciton%20Quantum%20Dynamics%20in%20a%20Ruddlesden%E2%80%93Popper%20Tin%20Iodide&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Rojas-Gatjens,%20Esteban&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2023-11-02&rft.volume=127&rft.issue=43&rft.spage=21194&rft.epage=21203&rft.pages=21194-21203&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c04896&rft_dat=%3Cproquest_pubme%3E2887475670%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887475670&rft_id=info:pmid/&rfr_iscdi=true