Many-Exciton Quantum Dynamics in a Ruddlesden–Popper Tin Iodide

We present a study on the many-body exciton interactions in a Ruddlesden–Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-11, Vol.127 (43), p.21194-21203
Hauptverfasser: Rojas-Gatjens, Esteban, Li, Hao, Vega-Flick, Alejandro, Cortecchia, Daniele, Petrozza, Annamaria, Bittner, Eric R., Srimath Kandada, Ajay Ram, Silva-Acuña, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a study on the many-body exciton interactions in a Ruddlesden–Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys. 2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.3c04896