Transient responses of nitrogenase to acetylene and oxygen actinorhizal nodules and cultured Frankia

Nitrogenase activity in root nodules of four species of actinorhizal plants showed varying declines in response to exposure to acetylene (10% v/v). Gymnostoma papuanum (S. Moore) L. Johnson and Casuarina equisetifolia L. nodules showed a small decline (5-15%) with little or no recovery over 15 minut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1990-02, Vol.92 (2), p.480-486
Hauptverfasser: Silvester, W.B. (University of Waikato, Hamilton, New Zealand), Winship, L.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrogenase activity in root nodules of four species of actinorhizal plants showed varying declines in response to exposure to acetylene (10% v/v). Gymnostoma papuanum (S. Moore) L. Johnson and Casuarina equisetifolia L. nodules showed a small decline (5-15%) with little or no recovery over 15 minutes. Myrica gale L. nodules showed a sharp decline followed by a rapid return to peak activity. Alnus incana ssp. rugosa (Du Roi) Clausen. nodules usually showed varying degrees of decline followed by a slower return to peak or near-peak activity. We call these effects acetylene-induced transients. Rapid increases in oxygen tension also caused dramatic transient decreases in nitrogenase activity in all species. The magnitude of the transient decrease was related to the size of the O2 partial pressure (pO2) rise, to the proximity of the starting and ending oxygen tensions to the pO2 optimum, and to the time for which the plant was exposed to the lower pO2. Oxygen-induced transients, induced both by step jumps in pO2 and by O2 pulses, were also observed in cultures of Frankia. The effects seen in nodules are purely a response by the bacterium and not a nodule effect per se. Oxygen-induced nitrogenase transients in actinorhizal nodules from the plant genera tested here do no appear to be a result of changes in nodule diffusion resistance
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.92.2.480