Phosphate starvation inducible 'bypasses' of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells
When Brassica nigra leaf petiole suspension cells were subjected to 7 days of inorganic phosphate (Pi) starvation the extractable activity of: (a) pyrophosphate:fructose 6-phosphate 1-phosphotransferase, nonphosphorylating NADP-glyceraldehyde 3-phosphate dehydrogenase, phosphoenolpryuvate phosphatas...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1989-08, Vol.90 (4), p.1275-1278 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When Brassica nigra leaf petiole suspension cells were subjected to 7 days of inorganic phosphate (Pi) starvation the extractable activity of: (a) pyrophosphate:fructose 6-phosphate 1-phosphotransferase, nonphosphorylating NADP-glyceraldehyde 3-phosphate dehydrogenase, phosphoenolpryuvate phosphatase, and phosphoenolpyruvate carboxylase increased at least fivefold, (b) phosphorylating NAD-glyceraldehyde 3-phosphate dehydrogenase decreased about sixfold, and (c) ATP:frutose 6-phosphate 1-phosphotransferase, 3-phosphoglycerate kinase, pyruvate kinase, or NAD malic enzyme was not altered. Pi derivation also resulted in signifcant reductions in extractable levels of Pi, ATP, ADP, fructose 2,6-bisphosphate, and soluble protein, but caused a sixfold elevation in free amino acid concentrations. No change in inorganic pyrophosphate concentration was observed following Pi starvation. It is hypothesized that pyrophosphate:frutose 6-phosphate 1-phosphotransferase, nonphosphorylating NADP-glyceraldehyde 3-phosphate dehydrogenase, and phosphoenolpyruvate phosphatase bypass nucleotide phosphate or Pi-dependent glycolytic reactions during sustained periods of Pi depletion |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.90.4.1275 |