Social and Medical Determinants of Diabetes: A Time-Constrained Multiple Mediator Analysis

Background A number of studies have shown an association between social determinants of health and the emergence of obesity and diabetes, but whether the relationship is causal is not clear. Objective To test whether social, environmental, and medical determinants directly or indirectly affect popul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Curēus (Palo Alto, CA) CA), 2023-09, Vol.15 (9), p.e46227
Hauptverfasser: Alemi, Farrokh, Lee, Kyung Hee, Vang, Jee, Lee, David, Schwartz, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background A number of studies have shown an association between social determinants of health and the emergence of obesity and diabetes, but whether the relationship is causal is not clear. Objective To test whether social, environmental, and medical determinants directly or indirectly affect population-level diabetes prevalence after controlling for mediator-mediator interactions. Methods Data were obtained from the CDC and supplemented with nine other data sources for 3,109 US counties. The dependent variable was the prevalence of diabetes in 2017. Independent variables were a given county's 30 social, environmental, and medical characteristics in 2015 and 2016. A network multiple mediation analysis was conducted. First, we used Least Absolute Shrinkage and Selection Operator (LASSO) regression to relate the 2017 diabetes rate in each county to 30 predictors measured in 2016, identifying statistically significant and robust predictors as the mediators within the network model and as direct determinants of 2017 diabetes. Second, each of the direct causes of diabetes was taken as a new response variable and LASSO-regressed on the same 30 independent variables measured in 2015, identifying the indirect (mediated) causes of diabetes. Subsequently, these direct and indirect predictors were used to construct a network model. The completed network was then employed to estimate the direct and mediated impact of variables on diabetes. Results For 2017 diabetes rates, 63% of the variation was explained by five variables measured in 2016: the percentage of residents who were (1) obese, (2) African American, (3) physically inactive, (4) in poor health condition, and (5) had a history of diabetes. These five direct predictors, measured in 2016, mediated the effect of indirect variables measured in 2015, including the percentage of residents who were (1) Hispanic, (2) physically distressed, (3) smokers, (4) living with children in poverty, (5) experiencing limited access to healthy foods, and (6) had low income. Conclusion All of the direct predictors of diabetes prevalence, except the percentage of residents who were African American, were medical conditions potentially influenced by lifestyles. Counties characterized by higher levels of obesity, inactivity, and poor health conditions exhibited increased diabetes rates in the following year. The impact of social determinants of illness, such as low income, children in poverty, and limited access to healthy foods, ha
ISSN:2168-8184
2168-8184
DOI:10.7759/cureus.46227