Assessing the Long-Term Creep Behaviour of Hydrothermally Treated Japanese Cedar Wood Using the Short-Term Accelerated Stepped Isostress Method

In this study, short-term accelerated creep tests were conducted using the stepped isostress method (SSM) to investigate the impact of hydrothermal treatment on the long-term creep behaviour of Japanese cedar wood and to determine optimal hydrothermal treatment conditions. The results showed that SS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-10, Vol.15 (20), p.4149
Hauptverfasser: Xu, Jin-Wei, Li, Cheng-Chun, Liu, Jian-Wei, Chang, Wen-Chao, Chang, Wen-Shao, Wu, Jyh-Horng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, short-term accelerated creep tests were conducted using the stepped isostress method (SSM) to investigate the impact of hydrothermal treatment on the long-term creep behaviour of Japanese cedar wood and to determine optimal hydrothermal treatment conditions. The results showed that SSM can effectively predict the creep behaviour of hydrothermally treated wood. Among the treatment conditions tested, Japanese cedar wood treated hydrothermally at 180 °C for 4 h exhibited higher flexural strength retention (91%) and moisture excluding efficiency (MEE) (44%) and demonstrated superior creep resistance compared to untreated wood. When subjected to a 30% average breaking load (ABL) over 20 years, the specimen’s creep compliance, instantaneous creep compliance, b value, activation volume, and improvement in creep resistance (ICR) were 0.17 GPa−1, 0.139 GPa−1, 0.15, 1.619 nm3, and 4%, respectively. The results indicate that subjecting Japanese cedar wood to hydrothermal treatment at 180 °C for 4 h has a negligible effect on its flexural properties but results in significant improvements in both dimensional stability and creep resistance.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15204149