Reverse Micellar Dyeing of Cotton Fabric with Reactive Dye Using Biodegradable Non-Ionic Surfactant as Nanoscale Carrier: An Optimisation Study by One-Factor-at-One-Time Approach

This study investigates the feasibility of using biodegradable secondary alcohol ethoxylate (SAE) non-ionic surfactant as a building block for the formation of reverse micelles, functioning as reactive dye carriers for the dyeing of cotton fabric in non-aqueous octane medium. Ten dyeing parameters w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-10, Vol.15 (20), p.4175
Hauptverfasser: Tang, Yiu Lun Alan, Jin, Shixin, Lee, Cheng Hao, Law, Ho Shing, Yu, Jiali, Wang, Yanming, Kan, Chi-wai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the feasibility of using biodegradable secondary alcohol ethoxylate (SAE) non-ionic surfactant as a building block for the formation of reverse micelles, functioning as reactive dye carriers for the dyeing of cotton fabric in non-aqueous octane medium. Ten dyeing parameters were optimised, by a one-factor-at-a-time approach, namely: (i) effect of colour fixation agent; (ii) surfactant-to-water mole ratio; (iii) surfactant-to-co-surfactant mole ratio; (iv) volume of soda ash; (v) volume of dye; (vi) solvent-to-cotton ratio; (vii) dyeing temperature; (viii) dyeing time; (ix) fixation time; (x) soda-ash-to-cotton ratio. The colour properties, fastness properties and physical properties of SAE-dyed samples were experimentally compared with the conventional water-dyed samples. The optimised condition was found when SAE samples were dyed as follows: (a) 1:20 surfactant-to-water ratio; (b) 1:8 surfactant-to-co-surfactant ratio; (c) 10:1 solvent ratio; (d) 40 min dyeing time; (e) 60 min fixation time; and (f) 70 °C dyeing and fixation temperature. The results showed that SAE-dyed samples have better colour strength, lower reflectance percentage and comparable levelness, fastness and physical properties than that of water-dyed samples. SEM images revealed that the dyed cotton fibres had no severe surface damage caused by an SAE-based reverse micellar dyeing system. The TEM image depicts that the reverse micelle was of nanoscale, spherical-shaped and had a core–shell structure, validating the presence of reverse micelle as a reactive dye carrier and the potential of an SAE-based reverse micellar system for dyeing of cotton fabrics.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15204175