Electrochemical Comparison of 2D-Flexible Solid-State Supercapacitors Based on a Matrix of PVA/H3PO4

Different modifications of woven carbon fiber (WCF) based on carbon aerogel (CAG), copper oxide nanoparticles (CuO-NPs), and lignin (LIG) has been tested and used to study their effect on the fabrication and performance of a flexible supercapacitor. New symmetric flexible supercapacitors (SFSCs) wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-10, Vol.15 (20), p.4036
Hauptverfasser: Muñoz, Bianca K., González-Banciella, Andrés, Ureña, Daniel, Sánchez, María, Ureña, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different modifications of woven carbon fiber (WCF) based on carbon aerogel (CAG), copper oxide nanoparticles (CuO-NPs), and lignin (LIG) has been tested and used to study their effect on the fabrication and performance of a flexible supercapacitor. New symmetric flexible supercapacitors (SFSCs) were fabricated using different separators. According to the electrochemical results, the device fabricated using CAG and woven glass fiber (WGF) in a sandwich type configuration CAG/WGF/CAG embedded in H3PO4/PVA exhibited the best performance (1.4 F/g, 0.961 W/kg, 0.161 Wh/kg). A proof of concept based on a LED powered on and a bending test was done, and the capacitor demonstrated excellent electrochemical values even during and after bending. The new device was able to recover 96.12% of its capacitance when returned to its original unbent position. The manufacturing process was critical, as the fibers or layers must be completely embedded in the gel electrolyte to function effectively. A double flexible supercapacitor connected in parallel was fabricated and it showed higher stability, in the same voltage window, yielding 311 mF/cm2 of areal capacitance.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15204036