Effects of L-arginine and arginine-arginine dipeptide on amino acids uptake and αS1-casein synthesis in bovine mammary epithelial cells

Abstract Arginine (Arg), as an important functional amino acids (AA), is essential for milk protein synthesis in lactating ruminants. Arg shares transporters with cationic and neutral AA in mammary epithelial cells. Therefore, competitive inhibition might exist among these AA in uptake by mammary ep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2023-01, Vol.101
Hauptverfasser: Sun, Mei, Cao, Yue, Xing, Yuanyuan, Mu, Xiaojia, Hao, Yihong, Yang, Jing, Niu, Xiaoyu, Li, Dabiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Arginine (Arg), as an important functional amino acids (AA), is essential for milk protein synthesis in lactating ruminants. Arg shares transporters with cationic and neutral AA in mammary epithelial cells. Therefore, competitive inhibition might exist among these AA in uptake by mammary epithelial cells. In this study, cultured bovine mammary epithelial cells (BMEC) were used as the model to investigate whether the availability of L-Arg (0.7, 1.4, 2.8, 5.6, and 11.2 mM) affects the uptake of other AA and if this related to αS1-casein synthesis, and whether Arginine-Arginine (Arg-Arg) substituting part of free L-Arg can alleviate competitive inhibition among Arg and other AA, so as to promote αS1-casein synthesis. Our results showed that 2.8 mM L-Arg generated the greatest positive effects on αS1-casein synthesis and the activation of mammalian target of rapamycin (mTOR) signaling pathway (P < 0.01). With L-Arg supply increasing from 0.7 to 11.2 mM, the net-uptake of other AA (except Glu and Ala) decreased linearly and quadratically (Plinear < 0.01; Pquadratic < 0.01). Compared with 2.8 mM, the net-uptake of essential amino acids (EAA) and total amino acids (TAA) were lower at 11.2 mM L-Arg group, while greater at 1.4 mM L-Arg group (P < 0.01). Arg-Arg dipeptide replacing 10% free L-Arg increased αS1-casein synthesis (P < 0.05), net-uptake of EAA and TAA, as well as phosphorylation level of mTOR and p70 ribosomal protein S6 kinase (P70S6K) and mRNA expression of oligopeptide transporter 2 (PepT2; P < 0.01). These observations suggested that the increased αS1-casein synthesis by 10% Arg-Arg dipeptide might be related to the increase of AA availability and the activation of mTOR signaling pathway in BMEC. Arginine-Arginine (Arg-Arg) dipeptide substituting 10% of free L-Arginine can promote αS1-casein synthesis. And the positive effects of Arg-Arg dipeptide on αS1-casein synthesis may be related to the increase of amino acids availability and the activation of mammalian target of rapamycin (mTOR) signaling pathway. Lay Summary Arginine (Arg) availability has been demonstrated to affect milk protein synthesis in dairy cows. Competitive inhibition exists among amino acids (AA) in uptake by mammary epithelial cells. This study aims to explore whether the availability of L-Arg affects the uptake of other AA by bovine mammary epithelial cells (BMEC) and if this is related to αS1-casein synthesis, and whether Arginine-Arginine (Arg-Arg) dipeptide substitut
ISSN:0021-8812
1525-3163
1525-3163
DOI:10.1093/jas/skad339