Controlled drug delivery from chitosan-coated heparin-loaded nanopores anodically grown on nitinol shape-memory alloy

Nitinol (NiTi shape-memory alloy) is an interesting candidate in various medical applications like dental, orthopedic, and cardiovascular devices, owing to its unique mechanical behaviors and proper biocompatibility. The aim of this work is the local controlled delivery of a cardiovascular drug, hep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2023-08, Vol.314, p.120961-120961, Article 120961
Hauptverfasser: Moradi, M.R., Salahinejad, E., Sharifi, E., Tayebi, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitinol (NiTi shape-memory alloy) is an interesting candidate in various medical applications like dental, orthopedic, and cardiovascular devices, owing to its unique mechanical behaviors and proper biocompatibility. The aim of this work is the local controlled delivery of a cardiovascular drug, heparin, loaded onto nitinol treated by electrochemical anodizing and chitosan coating. In this regard, the structure, wettability, drug release kinetics, and cell cytocompatibility of the specimens were analyzed in vitro. The two-stage anodizing process successfully developed a regular nanoporous layer of Ni-Ti-O on nitinol, which considerably decreased the sessile water contact angle and induced hydrophilicity. The application of the chitosan coatings controlled the release of heparin mainly by a diffusional mechanism, where the drug release mechanisms were evaluated by the Higuchi, first-order, zero-order, and Korsmeyer-Pepass models. Human umbilical cord endothelial cells (HUVECs) viability assay also showed the non-cytotoxicity of the samples, so that the best performance was found for the chitosan-coated samples. It is concluded that the designed drug delivery systems are promising for cardiovascular, particularly stent applications. [Display omitted]
ISSN:0144-8617
1879-1344
1879-1344
DOI:10.1016/j.carbpol.2023.120961