Assisting schizophrenia diagnosis using clinical electroencephalography and interpretable graph neural networks: a real-world and cross-site study
Schizophrenia (SCZ) is a chronic and serious mental disorder with a high mortality rate. At present, there is a lack of objective, cost-effective and widely disseminated diagnosis tools to address this mental health crisis globally. Clinical electroencephalogram (EEG) is a noninvasive technique to m...
Gespeichert in:
Veröffentlicht in: | Neuropsychopharmacology (New York, N.Y.) N.Y.), 2023-12, Vol.48 (13), p.1920-1930 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Schizophrenia (SCZ) is a chronic and serious mental disorder with a high mortality rate. At present, there is a lack of objective, cost-effective and widely disseminated diagnosis tools to address this mental health crisis globally. Clinical electroencephalogram (EEG) is a noninvasive technique to measure brain activity with high temporal resolution, and accumulating evidence demonstrates that clinical EEG is capable of capturing abnormal SCZ neuropathology. Although EEG-based automated diagnostic tools have obtained impressive performance on individual datasets, the transportability of potential EEG biomarkers in cross-site real-world application is still an open question. To address the challenges of small sample sizes and population heterogeneity, we develop an advanced interpretable deep learning model using multimodal clinical EEG features and demographic information as inputs to graph neural networks, and further propose different transfer learning strategies to adapt to different clinical scenarios. Taking the disease discrimination of health control (HC) and SCZ with 1030 participants as a use case, our model is trained on a small clinical dataset (N = 188, Chinese) and enhanced using a large-scale public dataset (N = 508, American) of adult participants. Cross-site validation from an independent dataset of adult participants (N = 157, Chinese) produced stable performance, with AUCs of 0.793-0.852 and accuracies of 0.786-0.858 for different SCZ prevalence, respectively. In addition, cross-site validation from another dataset of adolescent boys (N = 84, Russian) yielded an AUC of 0.702 and an accuracy of 0.690. Moreover, feature visualization further revealed that the ranking of feature importance varied significantly among different datasets, and that EEG theta and alpha band power appeared to be the most significant and translational biomarkers of SCZ pathology. Overall, our promising results demonstrate the feasibility of SCZ discrimination using EEG biomarkers in multiple clinical settings. |
---|---|
ISSN: | 0893-133X 1740-634X 1740-634X |
DOI: | 10.1038/s41386-023-01658-5 |