DASS Good: Explainable Data Mining of Spatial Cohort Data

Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co‐design of a modeling system, DASS, to support the hybrid human‐machine development and v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2023-06, Vol.42 (3), p.283-295
Hauptverfasser: Wentzel, A., Floricel, C., Canahuate, G., Naser, M.A., Mohamed, A.S., Fuller, CD, van Dijk, L., Marai, G.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co‐design of a modeling system, DASS, to support the hybrid human‐machine development and validation of predictive models for estimating long‐term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human‐in‐the‐loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14830