Diffusion tensor imaging-based machine learning for IDH wild-type glioblastoma stratification to reveal the biological underpinning of radiomic features

This study addresses the lack of systematic investigation into the prognostic value of hand-crafted radiomic features derived from diffusion tensor imaging (DTI) in isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM), as well as the limited understanding of the biological interpretation of i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CNS neuroscience & therapeutics 2023-11, Vol.29 (11), p.3339-3350
Hauptverfasser: Wang, Zilong, Guan, Fangzhan, Duan, Wenchao, Guo, Yu, Pei, Dongling, Qiu, Yuning, Wang, Minkai, Xing, Aoqi, Liu, Zhongyi, Yu, Bin, Zheng, Hongwei, Liu, Xianzhi, Yan, Dongming, Ji, Yuchen, Cheng, Jingliang, Yan, Jing, Zhang, Zhenyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study addresses the lack of systematic investigation into the prognostic value of hand-crafted radiomic features derived from diffusion tensor imaging (DTI) in isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM), as well as the limited understanding of the biological interpretation of individual DTI radiomic features and metrics. To develop and validate a DTI-based radiomic model for predicting prognosis in patients with IDH wild-type GBM and reveal the biological underpinning of individual DTI radiomic features and metrics. The DTI-based radiomic signature was an independent prognostic factor (p 
ISSN:1755-5930
1755-5949
DOI:10.1111/cns.14263