Multiobjective Optimization of Silver-Nanowire Deposition for Flexible Transparent Conducting Electrodes

Optimizing the spin coating of silver nanowires to form transparent conducting electrodes (TCE) is guided by machine learning (ML). A good TCE has two competing characteristics: high transmittance and high conductance. Optimization using a scalar figure of merit, as often done in the field, cannot s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2023-10, Vol.6 (19), p.17364-17368
Hauptverfasser: Lee, Mark, Piper, Robert T., Bhandari, Bishal, Hsu, Julia W. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimizing the spin coating of silver nanowires to form transparent conducting electrodes (TCE) is guided by machine learning (ML). A good TCE has two competing characteristics: high transmittance and high conductance. Optimization using a scalar figure of merit, as often done in the field, cannot satisfy the independent requirements for transmittance and conductance imposed by specific applications. By performing a Pareto front analysis based on ML models, we show that the desired outcomes of transmittance ≥ 75% and sheet resistance ≤ 15 Ω/sq are challenging but can be achieved using processing parameters identified by ML analysis.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.3c03599