Advancing the Management of Long COVID by Integrating into Health Informatics Domain: Current and Future Perspectives

The ongoing COVID-19 pandemic has profoundly affected millions of lives globally, with some individuals experiencing persistent symptoms even after recovering. Understanding and managing the long-term sequelae of COVID-19 is crucial for research, prevention, and control. To effectively monitor the h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2023-09, Vol.20 (19), p.6836
Hauptverfasser: Ambalavanan, Radha, Snead, R Sterling, Marczika, Julia, Kozinsky, Karina, Aman, Edris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ongoing COVID-19 pandemic has profoundly affected millions of lives globally, with some individuals experiencing persistent symptoms even after recovering. Understanding and managing the long-term sequelae of COVID-19 is crucial for research, prevention, and control. To effectively monitor the health of those affected, maintaining up-to-date health records is essential, and digital health informatics apps for surveillance play a pivotal role. In this review, we overview the existing literature on identifying and characterizing long COVID manifestations through hierarchical classification based on Human Phenotype Ontology (HPO). We outline the aspects of the National COVID Cohort Collaborative (N3C) and Researching COVID to Enhance Recovery (RECOVER) initiative in artificial intelligence (AI) to identify long COVID. Through knowledge exploration, we present a concept map of clinical pathways for long COVID, which offers insights into the data required and explores innovative frameworks for health informatics apps for tackling the long-term effects of COVID-19. This study achieves two main objectives by comprehensively reviewing long COVID identification and characterization techniques, making it the first paper to explore incorporating long COVID as a variable risk factor within a digital health informatics application. By achieving these objectives, it provides valuable insights on long COVID’s challenges and impact on public health.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph20196836