Controllable Anchoring of Graphitic Carbon Nitride on MnO2 Nanoarchitectures for Oxygen Evolution Electrocatalysis

The design and fabrication of eco-friendly and cost-effective (photo)­electrocatalysts for the oxygen evolution reaction (OER) is a key research goal for a proper management of water splitting to address the global energy crisis. In this work, we focus on the preparation of supported MnO2/graphitic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-10, Vol.15 (40), p.47368-47380
Hauptverfasser: Benedet, Mattia, Gallo, Andrea, Maccato, Chiara, Rizzi, Gian Andrea, Barreca, Davide, Lebedev, Oleg I., Modin, Evgeny, McGlynn, Ruairi, Mariotti, Davide, Gasparotto, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design and fabrication of eco-friendly and cost-effective (photo)­electrocatalysts for the oxygen evolution reaction (OER) is a key research goal for a proper management of water splitting to address the global energy crisis. In this work, we focus on the preparation of supported MnO2/graphitic carbon nitride (g-CN) OER (photo)­electrocatalysts by means of a novel preparation strategy. The proposed route consists of the plasma enhanced-chemical vapor deposition (PE-CVD) of MnO2 nanoarchitectures on porous Ni scaffolds, the anchoring of controllable g-CN amounts by an amenable electrophoretic deposition (EPD) process, and the ultimate thermal treatment in air. The inherent method versatility and flexibility afforded defective MnO2/g-CN nanoarchitectures, featuring a g-CN content and nano-organization tunable as a function of EPD duration and the used carbon nitride precursor. Such a modulation had a direct influence on OER functional performances, which, for the best composite system, corresponded to an overpotential of 430 mV at 10 mA/cm2, a Tafel slope of ≈70 mV/dec, and a turnover frequency of 6.52 × 10–3 s–1, accompanied by a very good time stability. The present outcomes, comparing favorably with previous results on analogous systems, were rationalized on the basis of the formation of type-II MnO2/g-CN heterojunctions, and yield valuable insights into this class of green (photo)­electrocatalysts for end uses in solar-to-fuel conversion and water treatment.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c09363