Boosting 2-photon vision with adaptive optics
The 2-photon effect in vision occurs when two photons of the same wavelength are absorbed by cone photopigment in the retina and create a visual sensation matching the appearance of light close to half their wavelength. This effect is especially salient for infrared light, where humans are mostly in...
Gespeichert in:
Veröffentlicht in: | Journal of vision (Charlottesville, Va.) Va.), 2023-10, Vol.23 (12), p.4-4 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The 2-photon effect in vision occurs when two photons of the same wavelength are absorbed by cone photopigment in the retina and create a visual sensation matching the appearance of light close to half their wavelength. This effect is especially salient for infrared light, where humans are mostly insensitive to 1-photon isomerizations and thus any perception is dominated by 2-photon isomerizations. This phenomenon can be made more readily visible using short-pulsed lasers, which increase the likelihood of 2-photon excitation by making photon arrivals at the retina more concentrated in time. Adaptive optics provides another avenue for enhancing the 2-photon effect by focusing light more tightly at the retina, thereby increasing the spatial concentration of incident photons. This article makes three contributions. First, we demonstrate through color-matching experiments that an adaptive optics correction can provide a 25-fold increase in the luminance of the 2-photon effect-a boost equivalent to reducing pulse width by 96%. Second, we provide image-based evidence that the 2-photon effect occurs at the photoreceptor level. Third, we use our results to compute the specifications for a system that could utilize 2-photon vision and adaptive optics to image and stimulate the retina using a single infrared wavelength and reach luminance levels comparable to conventional displays. |
---|---|
ISSN: | 1534-7362 1534-7362 |
DOI: | 10.1167/jov.23.12.4 |