Identification of intracellular carbonic anhydrase in Chlamydomonas reinhardtii which is distinct from the periplasmic form of the enzyme

A physiologically significant level of intracellular carbonic anhydrase has been identified in Chlamydomonas reinhardtii after lysis of the cell wall-less mutant, cw15, and two intracellular polypeptides have been identified which bind to anti-carbonic anhydrase antisera. The susceptibility of the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1989-03, Vol.89 (3), p.904-909
Hauptverfasser: Husic, H.D, Kitayama, M, Togasaki, R.K, Moroney, J.V, Morris, K.L, Tolbert, N.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A physiologically significant level of intracellular carbonic anhydrase has been identified in Chlamydomonas reinhardtii after lysis of the cell wall-less mutant, cw15, and two intracellular polypeptides have been identified which bind to anti-carbonic anhydrase antisera. The susceptibility of the intracellular activity to sulfonamide carbonic anhydrase inhibitors is more than three orders-of-magnitude less than that of the periplasmic enzyme, indicating that the intracellular activity was distinct from the periplasmic form of the enzyme. When electrophoretically separated cell extracts or chloroplast stromal fractions were probed with either anti-C. reinhardtii periplasmic carbonic anhydrase antiserum, or anti-spinach carbonic anhydrase antiserum, immunoreactive polypeptides of 45 kilodaltons and 110 kilodaltons were observed with both antisera. The strongly immunoreactive 37 kilodalton polypeptide due to the periplasmic carbonic anhydrase was also observed in lysed cells, but neither the 37 kilodalton nor the 110 kilodalton polypeptides were present in the chloroplast stromal fraction. These studies have identified intracellular carbonic anhydrase activity, and putative intracellular carbonic anhydrase activity, and putative intracellular carbonic anhydrase polypeptides in Chlamydomonas reinhardtii represented by a 45 kilodalton polypeptide in the chloroplast and a 110 kilodalton form probably in the cytoplasm, which may be associated with an intracellular inorganic carbon concentrating system
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.89.3.904