Leaf carbon metabolism and metabolite levels during a period of sinusoidal light

Photosynthesis rate, internal CO2 concentration, starch, sucrose, and metabolite levels were measured in leaves of sugar beet (Beta vulgaris L.) during a 14-h period of sinusoidal light, which simulated a natural light period. Photosynthesis rate closely followed increasing and decreasing light leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1989-02, Vol.89 (2), p.403-408
Hauptverfasser: Servaites, J.C, Geiger, D.R, Tucci, M.A, Fondy, B.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photosynthesis rate, internal CO2 concentration, starch, sucrose, and metabolite levels were measured in leaves of sugar beet (Beta vulgaris L.) during a 14-h period of sinusoidal light, which simulated a natural light period. Photosynthesis rate closely followed increasing and decreasing light level. Chloroplast metabolite levels changed in a manner indicating differential activation of enzymes at different light levels. Starch levels declined during the first and last 2 hours of the photoperiod, but increased when photosynthesis rate was greater than 50% of maximal. Sucrose and sucrose phosphate synthase levels were constant during the photoperiod, which is consistent with a relatively steady rate of sucrose synthesis during the day as observed previously (BR Fondy et al. [1989] Plant Physiol 89: 396-402). When starch was being degraded, glucose 1-phosphate level was high and there was a large amount of glucose 6-phosphate above that in equilibrium with fructose 6-phosphate, while fructose 6-phosphate and triose-phosphate levels were very low. Likewise, the regulatory metabolite, fructose, 2,6-bisphosphate was high, indicating that little carbon could move to sucrose from starch by the triose-phosphate pathway. These data cast doubt upon the feasibility of significant carbon flow through the triosephosphate pathway during starch degradation and support the need for an additional pathway for mobilizing starch carbon to sucrose
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.89.2.403