An Artificial Intelligence Approach to Predicting Unplanned Intubation Following Anterior Cervical Discectomy and Fusion

Study Design Level III retrospective database study. Objectives The purpose of this study is to determine if machine learning algorithms are effective in predicting unplanned intubation following anterior cervical discectomy and fusion (ACDF). Methods The National Surgical Quality Initiative Program...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global spine journal 2023-09, Vol.13 (7), p.1849-1855
Hauptverfasser: Veeramani, Ashwin, Zhang, Andrew S, Blackburn, Amy Z., Etzel, Christine M., DiSilvestro, Kevin J., McDonald, Christopher L., Daniels, Alan H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Study Design Level III retrospective database study. Objectives The purpose of this study is to determine if machine learning algorithms are effective in predicting unplanned intubation following anterior cervical discectomy and fusion (ACDF). Methods The National Surgical Quality Initiative Program (NSQIP) was queried to select patients who had undergone ACDF. Machine learning analysis was conducted in Python and multivariate regression analysis was conducted in R. C-Statistics area under the curve (AUC) and prediction accuracy were used to measure the classifier’s effectiveness in distinguishing cases. Results In total, 54 502 patients met the study criteria. Of these patients, .51% underwent an unplanned re-intubation. Machine learning algorithms accurately classified between 72%-100% of the test cases with AUC values of between .52-.77. Multivariable regression indicated that the number of levels fused, male sex, COPD, American Society of Anesthesiologists (ASA) > 2, increased operating time, Age > 65, pre-operative weight loss, dialysis, and disseminated cancer were associated with increased risk of unplanned intubation. Conclusions The models presented here achieved high accuracy in predicting risk factors for re-intubation following ACDF surgery. Machine learning analysis may be useful in identifying patients who are at a higher risk of unplanned post-operative re-intubation and their treatment plans can be modified to prophylactically prevent respiratory compromise and consequently unplanned re-intubation.
ISSN:2192-5682
2192-5690
DOI:10.1177/21925682211053593