Targeting leucine-rich repeat serine/threonine-protein kinase 2 sensitizes pancreatic ductal adenocarcinoma to anti-PD-L1 immunotherapy
Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to immune checkpoint blockade therapy, and negative feedback of tumor immune evasion might be partly responsible. We isolated CD8+ T cells and cultured them in vitro. Proteomics analysis was performed to compare changes in Panc02 cell lines cu...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2023-10, Vol.31 (10), p.2929-2947 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to immune checkpoint blockade therapy, and negative feedback of tumor immune evasion might be partly responsible. We isolated CD8+ T cells and cultured them in vitro. Proteomics analysis was performed to compare changes in Panc02 cell lines cultured with conditioned medium, and leucine-rich repeat kinase 2 (LRRK2) was identified as a differential gene. LRRK2 expression was related to CD8+ T cell spatial distribution in PDAC clinical samples and upregulated by CD8+ T cells via interferon gamma (IFN-γ) simulation in vitro. Knockdown or pharmacological inhibition of LRRK2 activated an anti-pancreatic cancer immune response in mice, which meant that LRRK2 acted as an immunosuppressive gene. Mechanistically, LRRK2 phosphorylated PD-L1 at T210 to inhibit its ubiquitination-mediated proteasomal degradation. LRRK2 inhibition attenuated PD-1/PD-L1 blockade-mediated, T cell-induced upregulation of LRRK2/PD-L1, thus sensitizing the mice to anti-PD-L1 therapy. In addition, adenosylcobalamin, the activated form of vitamin B12, which was found to be a broad-spectrum inhibitor of LRRK2, could inhibit LRRK2 in vivo and sensitize PDAC to immunotherapy as well, which potentially endows LRRK2 inhibition with clinical translational value. Therefore, PD-L1 blockade combined with LRRK2 inhibition could be a novel therapy strategy for PDAC.
[Display omitted]
Bai and colleagues found that LRRK2 could be in the negative feedback loop for PDAC immune evasion. LRRK2 phosphorylated PD-L1 at T210 to inhibit its ubiquitination-mediated proteasomal degradation and thus promote tumor progression. LRRK2 inhibition or supplementation with adenosylcobalamin could sensitize PDAC to anti-PD1/PD-L1 immunotherapy. |
---|---|
ISSN: | 1525-0016 1525-0024 1525-0024 |
DOI: | 10.1016/j.ymthe.2023.07.021 |