Ezetimibe Induces Vasodilation in Rat Mesenteric Resistance Arteries through Inhibition of Extracellular Ca2+ Influx

Ezetimibe is a lipid-lowering agent that selectively inhibits cholesterol absorption by binding to the Niemann–Pick C1-like 1 (NPC1L1) protein. Although it is well known that administration of ezetimibe in hypercholesterolemia patients reduces the risk of cardiovascular events through attenuation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2023-09, Vol.24 (18), p.13992
Hauptverfasser: Oh, Eun Yi, Haam, Chae Eun, Choi, Sooyeon, Byeon, Seonhee, Choi, Soo-Kyoung, Lee, Young-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ezetimibe is a lipid-lowering agent that selectively inhibits cholesterol absorption by binding to the Niemann–Pick C1-like 1 (NPC1L1) protein. Although it is well known that administration of ezetimibe in hypercholesterolemia patients reduces the risk of cardiovascular events through attenuation of atherosclerosis, studies on the direct effect of ezetimibe on vascular function are not sufficient. The aim of the present study was to investigate the vascular effects of ezetimibe in rat mesenteric arteries. In the present study, 12-week-old male Sprague Dawley rats were used. After the rats were sacrificed, the second branches of the mesenteric arteries were isolated and cut into 2–3 mm segments and mounted in a multi-wire myography system to measure isometric tension. Ezetimibe reduced vasoconstriction induced by U46619 (500 nM) in endothelium-intact and endothelium-denuded arteries. Ezetimibe-induced vasodilation was not affected by the endothelial nitric oxide synthase (eNOS) inhibitor Nω-Nitro-L-arginine (L-NNA, 300 μM) or the non-selective potassium channel blocker, tetraethylammonium (TEA, 10 mM). Moreover, ezetimibe also completely blocked the contraction induced by an increase in external calcium concentration. Ezetimibe significantly reduced vascular contraction induced by L-type Ca2+ channel activator (Bay K 8644, 30 nM). Treatment with ezetimibe decreased the phosphorylation level of 20 kDa myosin light chain (MLC20) in vascular smooth muscle cells. In the present study, we found that ezetimibe has a significant vasodilatory effect in rat mesenteric resistance arteries. These results suggest that ezetimibe may have beneficial cardiovascular effects beyond its cholesterol-lowering properties.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241813992