Structure and function of the apical PIKKs in double-strand break repair
Members of the phosphatidylinositol 3ʹ kinase (PI3K)-related kinases (PIKKs) family, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), ataxia telangiectasia mutated (ATM), ataxia-telangiectasia mutated and Rad3-related (ATR), mammalian target of rapamycin (mTOR), suppressor with m...
Gespeichert in:
Veröffentlicht in: | Current opinion in structural biology 2023-10, Vol.82, p.102651-102651, Article 102651 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Members of the phosphatidylinositol 3ʹ kinase (PI3K)-related kinases (PIKKs) family, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), ataxia telangiectasia mutated (ATM), ataxia-telangiectasia mutated and Rad3-related (ATR), mammalian target of rapamycin (mTOR), suppressor with morphological effect on genitalia 1 (SMG1), and transformation/transcription domain-associated protein 1 (TRRAP/Tra1), participate in a variety of physiological processes, such as cell-cycle control, metabolism, transcription, replication, and the DNA damage response. In eukaryotic cells, DNA-PKcs, ATM, and ATR-ATRIP are the main sensors and regulators of DNA double-strand break repair. The purpose of this review is to describe recent structures of DNA-PKcs, ATM, and ATR, as well as their functions in activation and phosphorylation in different DNA repair pathways. |
---|---|
ISSN: | 0959-440X 1879-033X 1879-033X |
DOI: | 10.1016/j.sbi.2023.102651 |