Electrokinetically enhanced label-free plasmonic sensing for rapid detection of tumor-derived extracellular vesicles
of rare circulating extracellular vesicles (EV) from early cancers or different types of host cells requires extremely sensitive EV sensing technologies. Nanoplasmonic EV sensing technologies have demonstrated good analytical performances, but their sensitivity is often limited by EVs’ diffusion to...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2023-10, Vol.237, p.115422-115422, Article 115422 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | of rare circulating extracellular vesicles (EV) from early cancers or different types of host cells requires extremely sensitive EV sensing technologies. Nanoplasmonic EV sensing technologies have demonstrated good analytical performances, but their sensitivity is often limited by EVs’ diffusion to the active sensor surface for specific target EV capture. Here, we developed an advanced plasmonic EV platform with electrokinetically enhanced yields (KeyPLEX). The KeyPLEX system effectively overcomes diffusion-limited reactions with applied electroosmosis and dielectrophoresis forces. These forces bring EVs toward the sensor surface and concentrate them in specific areas. Using the keyPLEX, we showed significant improvements in detection sensitivity by ∼100-fold, leading to the sensitive detection of rare cancer EVs from human plasma samples in 10 min. The keyPLEX system could become a valuable tool for point-of-care rapid EV analysis.
[Display omitted] |
---|---|
ISSN: | 0956-5663 1873-4235 1873-4235 |
DOI: | 10.1016/j.bios.2023.115422 |