URNet: System for recommending referrals for community screening of diabetic retinopathy based on deep learning

Diabetic retinopathy (DR) will cause blindness if the detection and treatment are not carried out in the early stages. To create an effective treatment strategy, the severity of the disease must first be divided into referral-warranted diabetic retinopathy (RWDR) and non-referral diabetic retinopath...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental biology and medicine (Maywood, N.J.) N.J.), 2023-06, Vol.248 (11), p.909-921
Hauptverfasser: Yang, Kun, Lu, Yufei, Xue, Linyan, Yang, Yueting, Chang, Shilong, Zhou, Chuanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetic retinopathy (DR) will cause blindness if the detection and treatment are not carried out in the early stages. To create an effective treatment strategy, the severity of the disease must first be divided into referral-warranted diabetic retinopathy (RWDR) and non-referral diabetic retinopathy (NRDR). However, there are usually no sufficient fundus examinations due to lack of professional service in the communities, particularly in the developing countries. In this study, we introduce UGAN_Resnet_CBAM (URNet; UGAN is a generative adversarial network that uses Unet for feature extraction), a two-stage end-to-end deep learning technique for the automatic detection of diabetic retinopathy. The characteristics of DDR fundus data set were used to design an adaptive image preprocessing module in the first stage. Gradient-weighted Class Activation Mapping (Grad-CAM) and t-distribution and stochastic neighbor embedding (t-SNE) were used as the evaluation indices to analyze the preprocessing results. In the second stage, we enhanced the performance of the Resnet50 network by integrating the convolutional block attention module (CBAM). The outcomes demonstrate that our proposed solution outperformed other current structures, achieving 94.5% and 94.4% precisions, and 96.2% and 91.9% recall for NRDR and RWDR, respectively.
ISSN:1535-3702
1535-3699
DOI:10.1177/15353702231171898