A Fracture Risk Assessment Tool for High Resolution Peripheral Quantitative Computed Tomography

Most fracture risk assessment tools use clinical risk factors combined with bone mineral density (BMD) to improve assessment of osteoporosis; however, stratifying fracture risk remains challenging. This study developed a fracture risk assessment tool that uses information about volumetric bone densi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bone and mineral research 2023-09, Vol.38 (9), p.1234-1244
Hauptverfasser: Whittier, Danielle E, Samelson, Elizabeth J, Hannan, Marian T, Burt, Lauren A, Hanley, David A, Biver, Emmanuel, Szulc, Pawel, Sornay-Rendu, Elisabeth, Merle, Blandine, Chapurlat, Roland, Lespessailles, Eric, Wong, Andy Kin On, Goltzman, David, Khosla, Sundeep, Ferrari, Serge, Bouxsein, Mary L, Kiel, Douglas P, Boyd, Steven K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most fracture risk assessment tools use clinical risk factors combined with bone mineral density (BMD) to improve assessment of osteoporosis; however, stratifying fracture risk remains challenging. This study developed a fracture risk assessment tool that uses information about volumetric bone density and three-dimensional structure, obtained using high-resolution peripheral quantitative compute tomography (HR-pQCT), to provide an alternative approach for patient-specific assessment of fracture risk. Using an international prospective cohort of older adults (n = 6802) we developed a tool to predict osteoporotic fracture risk, called μFRAC. The model was constructed using random survival forests, and input predictors included HR-pQCT parameters summarizing BMD and microarchitecture alongside clinical risk factors (sex, age, height, weight, and prior adulthood fracture) and femoral neck areal BMD (FN aBMD). The performance of μFRAC was compared to the Fracture Risk Assessment Tool (FRAX) and a reference model built using FN aBMD and clinical covariates. μFRAC was predictive of osteoporotic fracture (c-index = 0.673, p 
ISSN:0884-0431
1523-4681
1523-4681
DOI:10.1002/jbmr.4808