Sensitivity Constraints of Extractive Electrospray for a Model System and Secondary Organic Aerosol
The quantification of an aerosol chemical composition is complicated by the uncertainty in the sensitivity of each species detected. Soft-ionization response factors can vary widely from molecule to molecule. Here, we have employed a method to separate molecules by their volatility through systemati...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2023-09, Vol.95 (37), p.13788-13795 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quantification of an aerosol chemical composition is complicated by the uncertainty in the sensitivity of each species detected. Soft-ionization response factors can vary widely from molecule to molecule. Here, we have employed a method to separate molecules by their volatility through systematic evaporation with a thermal denuder (TD). The fraction remaining after evaporation is compared between an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) and a scanning mobility particle sizer (SMPS), which provides a comparison between a quantified mass loss by the SMPS and the signal loss in the EESI-TOF. The sensitivity of the EESI-TOF is determined for both a simplified complex mixture (PEG-300) and also for a complex mixture of α-pinene secondary organic aerosol (SOA). For PEG-300, separation is possible on a molecule-by-molecule level with the TD and provides insights into the molecule-dependent sensitivity of the EESI-TOF, showing a higher sensitivity toward the most volatile molecule. For α-pinene SOA, sensitivity determination for specific classes is possible because of the number of molecular formula observed by the EESI-TOF. These classes are separated by their volatility and are broken down into monomers (O3–5,6–7,8+), dimers (O4–7,8+), and higher order oligomers (e.g., trimers and tetramers). Here, we show that the EESI-TOF initially measures 60.1% monomers, 32.7% dimers, and 7.2% trimers and tetramers in α-pinene SOA, but after sensitivity correction, the distribution of SOA is 37.4% monomers, 56.1% dimers, and 6.4% trimers and tetramers. These results provide a path forward for the quantification of aerosol components with the EESI-TOF in other applications and potentially for atmospheric measurements. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.3c00441 |