The miR-143/145 cluster induced by TGF-β1 suppresses Wilms' tumor 1 expression in cultured human podocytes
Transforming growth factor (TGF)-β1 contributes to podocyte injury in various glomerular diseases, including diabetic kidney disease, probably at least in part by attenuating the expression of Wilms' tumor 1 (WT1). However, the precise mechanisms remain to be defined. We performed miRNA microar...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Renal physiology 2023-07, Vol.325 (1), p.F121-F133 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transforming growth factor (TGF)-β1 contributes to podocyte injury in various glomerular diseases, including diabetic kidney disease, probably at least in part by attenuating the expression of Wilms' tumor 1 (WT1). However, the precise mechanisms remain to be defined. We performed miRNA microarray analysis in a human podocyte cell line cultured with TGF-β1 to examine the roles of miRNAs in podocyte damage. The microarray analysis identified miR-143-3p as the miRNA with the greatest increase following exposure to TGF-β1. Quantitative RT-PCR confirmed a significant increase in the miR-143-3p/145-5p cluster in TGF-β1-supplemented cultured podocytes and demonstrated upregulation of miR-143-3p in the glomeruli of mice with type 2 diabetes. Ectopic expression of miR-143-3p and miR-145-5p suppressed WT1 expression in cultured podocytes. Furthermore, inhibition of Smad or mammalian target of rapamycin signaling each partially reversed the TGF-β1-induced increase in miR-143-3p/145-5p and decrease in WT1. In conclusion, TGF-β1 induces expression of miR-143-3p/145-5p in part through Smad and mammalian target of rapamycin pathways, and miR-143-3p/145-5p reduces expression of WT1 in cultured human podocytes. miR-143-3p/145-5p may contribute to TGF-β1-induced podocyte injury.
This study by miRNA microarray analysis demonstrated that miR-143-3p expression was upregulated in cultured human podocytes following exposure to transforming growth factor (TGF)-β1. Furthermore, we report that the miR-143/145 cluster contributes to decreased expression of Wilms' tumor 1, which represents a possible mechanism for podocyte injury induced by TGF-β1. This study is important because it presents a novel mechanism for TGF-β-associated glomerular diseases, including diabetic kidney disease (DKD), and suggests potential therapeutic strategies targeting miR-143-3p/145-5p. |
---|---|
ISSN: | 1931-857X 1522-1466 1522-1466 |
DOI: | 10.1152/ajprenal.00313.2022 |