An oviduct glycan increases sperm lifespan by diminishing the production of ubiquinone and reactive oxygen species

Sperm storage by females after mating for species-dependent periods is used widely among animals with internal fertilization to allow asynchrony between mating and ovulation. Many mammals store sperm in the lower oviduct where specific glycans on oviduct epithelial cells retain sperm to form a reser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of reproduction 2023-09, Vol.109 (3), p.356-366
Hauptverfasser: Hughes, Jennifer R., McMorrow, Katie J., Bovin, Nicolai, Miller, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sperm storage by females after mating for species-dependent periods is used widely among animals with internal fertilization to allow asynchrony between mating and ovulation. Many mammals store sperm in the lower oviduct where specific glycans on oviduct epithelial cells retain sperm to form a reservoir. Binding to oviduct cells suppresses sperm intracellular Ca2+ and increases sperm longevity. We investigated the mechanisms by which a specific oviduct glycan, 3-O-sulfated Lewis X trisaccharide (suLeX), prolongs the lifespan of porcine sperm. Using targeted metabolomics, we found that binding to suLeX diminishes the abundance of 4-hydroxybenzoic acid, the precursor to ubiquinone (also known as Coenzyme Q), 30 min after addition. Ubiquinone functions as an electron acceptor in the electron transport chain (ETC). 3-O-sulfated Lewis X trisaccharide also suppressed the formation of fumarate. A component of the citric acid cycle, fumarate is synthesized by succinate-coenzyme Q reductase, which employs ubiquinone and is also known as Complex II in the ETC. Consistent with the reduced activity of the ETC, the production of harmful reactive oxygen species (ROS) was diminished. The enhanced sperm lifespan in the oviduct may be because of suppressed ROS production because high ROS concentrations have toxic effects on sperm. Summary Sentence The binding of porcine sperm to an oviduct trisaccharide diminishes electron transport chain activity and reduces production of harmful reactive oxygen species. Graphical Abstract
ISSN:0006-3363
1529-7268
1529-7268
DOI:10.1093/biolre/ioad074