Impact of Premature Ventricular Complex (PVC) Burden on the Left Ventricle in the Structurally Normal Heart: Hemodynamic Alterations of Idiopathic PVC on Echocardiography
Background: Premature ventricular complex (PVC) without structural heart disease is mostly viewed as a benign arrhythmia. However, the high burden of PVC causes cardiomyopathy due to intraventricular dyssynchrony. The effects of ectopic contraction on left ventricular (LV) hemodynamics in the struct...
Gespeichert in:
Veröffentlicht in: | Acta Cardiologica Sinica 2023-09, Vol.39 (5), p.687-694 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Premature ventricular complex (PVC) without structural heart disease is mostly viewed as a benign arrhythmia. However, the high burden of PVC causes cardiomyopathy due to intraventricular dyssynchrony. The effects of ectopic contraction on left ventricular (LV) hemodynamics in the structurally normal heart are unclear. Objectives: To examine the effect of PVC burden on LV dimension, LV systolic function, and intraventricular blood flow, and to determine whether ectopic ventricular contraction affects LV hemodynamics. Methods: Patients aged ≥ 18 years with PVC ≥ 5% on Holter recording were enrolled and divided into groups G1 (5-10%), G2 (10-20%), and G3 (≥20%). We excluded patients with structural heart diseases, pacemakers, and LV systolic dysfunction [LV ejection fraction (LVEF) < 50%]. Clinical characteristics and routine transthoracic echocardiography parameters were compared. Results: The end-systolic LV internal dimension increased according to the PVC burden from G1 to G3 (p = 0.001). LVEF was inversely associated with PVC burden from G1 to G3 (p = 0.002). The same pattern was seen for LV outflow tract (LVOT) maximal velocity (p = 0.005) and maximal pressure gradient (PG) (p = 0.005), LVOT velocity time integral (VTI) (p = 0.03) and LV stroke volume index (LVSI) (p = 0.008). Conclusions: Systolic function and LV end-systolic dimension were inversely associated with PVC burden. Decreased LVOT flow velocity and PG were related to increased PVC burden. LVOT VTI and LVSI were smaller when the PVC burden exceeded 20%. These negative hemodynamic manifestations of idiopathic PVC were considerable even in structure normal hearts, hence the early elimination of PVC is strongly advised. |
---|---|
ISSN: | 1011-6842 |
DOI: | 10.6515/ACS.202309_39(5).20230119A |