Precise localization of microvascular invasion in hepatocellular carcinoma based on three-dimensional histology-MR image fusion: an ex vivo experimental study
Microvascular invasion (MVI) is an independent risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). However, MVI cannot be detected by conventional imaging. To localize MVI precisely on magnetic resonance (MR) images, we evaluated the feasibility and accuracy of 3-dimensional...
Gespeichert in:
Veröffentlicht in: | Quantitative imaging in medicine and surgery 2023-09, Vol.13 (9), p.5887-5901 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microvascular invasion (MVI) is an independent risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). However, MVI cannot be detected by conventional imaging. To localize MVI precisely on magnetic resonance (MR) images, we evaluated the feasibility and accuracy of 3-dimensional (3D) histology-MR image fusion of the liver.BackgroundMicrovascular invasion (MVI) is an independent risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). However, MVI cannot be detected by conventional imaging. To localize MVI precisely on magnetic resonance (MR) images, we evaluated the feasibility and accuracy of 3-dimensional (3D) histology-MR image fusion of the liver.Animal models of VX2 liver tumors were established in 10 New Zealand white rabbits under ultrasonographic guidance. The whole liver lobe containing the VX2 tumor was extracted and divided into 4 specimens, for a total of 40 specimens. MR images were obtained with a T2-weighted sequence for each specimen, and then histological images were obtained by intermittent, serial pathological sections. 3D histology-MR image fusion was performed via landmark registration in 3D Slicer software. We calculated the success rate and registration errors of image fusion, and then we located the MVI on MR images. Regarding influencing factors, we evaluated the uniformity of tissue thickness after sampling and the uniformity of tissue shrinkage after dehydration.MethodsAnimal models of VX2 liver tumors were established in 10 New Zealand white rabbits under ultrasonographic guidance. The whole liver lobe containing the VX2 tumor was extracted and divided into 4 specimens, for a total of 40 specimens. MR images were obtained with a T2-weighted sequence for each specimen, and then histological images were obtained by intermittent, serial pathological sections. 3D histology-MR image fusion was performed via landmark registration in 3D Slicer software. We calculated the success rate and registration errors of image fusion, and then we located the MVI on MR images. Regarding influencing factors, we evaluated the uniformity of tissue thickness after sampling and the uniformity of tissue shrinkage after dehydration.The VX2 liver tumor model was successfully established in the 10 rabbits. The incidence of MVI was 80% (8/10). 3D histology-MR image fusion was successfully performed in the 39 specimens, and the success rate was 97.5% (39/40). The average registration error was 0.44±0.15 mm. MVI was dete |
---|---|
ISSN: | 2223-4292 2223-4306 |
DOI: | 10.21037/qims-23-220 |