Use of cellulose microfibers from olive pomace to reinforce green composites for sustainable packaging applications

To valorize abundant, unexploited, and low-cost agro-industrial by-products, olive pomace is proposed as a sustainable and renewable raw material for cellulose microfibers (CMFs) production. In this study, CMFs were extracted from olive pomace using alkaline and bleaching treatments and characterize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food Science & Nutrition 2023-09, Vol.11 (9), p.5102-5113
Hauptverfasser: Amara, Cyrine, El Mahdi, Ayoub, Akman, Perihan Kubra, Medimagh, Raouf, Tornuk, Fatih, Khwaldia, Khaoula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To valorize abundant, unexploited, and low-cost agro-industrial by-products, olive pomace is proposed as a sustainable and renewable raw material for cellulose microfibers (CMFs) production. In this study, CMFs were extracted from olive pomace using alkaline and bleaching treatments and characterized in terms of morphological, structural, and thermal properties. Afterward, the reinforcing capability of microfibers was examined using carboxymethyl cellulose (CMC) as a polymer matrix by the solvent casting process. The effects of CMF loading (1%, 3%, 5%, and 10%) on the composites' mechanical, physical, morphological, and thermal properties were assessed. CMF incorporation led to a decrease in moisture content (MC), water solubility (WS), and water vapor permeability (WVP) and an increase in tensile strength (TS), stiffness and transparency values, and thermal stability of CMC films. Increasing CMF content to 5%, increased the TS and elasticity modulus by 54% and 79%, respectively, and reduced the WVP and light transmissivity at 280 nm, by 22% and 47%, respectively. The highest water, moisture, light barrier, and mechanical properties of composites were reached at 5% CMFs.
ISSN:2048-7177
2048-7177
DOI:10.1002/fsn3.3469