Investigating the Effects of Recycled Plastic as Fibers on Bending Behavior of Green Concrete Beams Exposed to Marine Environment

Due to the noticeable production of greenhouse gases in cement production processes around the world, the use of supplementary cementitious materials (SCMs) like metakaolin/zeolite and the production of green concrete is inevitable, which leads to reducing the amount of environmental pollution and,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-08, Vol.16 (17), p.5912
Hauptverfasser: Shayanfar, Mohsen Ali, Shahrabadi, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the noticeable production of greenhouse gases in cement production processes around the world, the use of supplementary cementitious materials (SCMs) like metakaolin/zeolite and the production of green concrete is inevitable, which leads to reducing the amount of environmental pollution and, specifically for maritime environments, improving the mechanical qualities of concrete. In addition, nowadays, the increasing use of plastic materials such as disposable glasses is considered a major problem in environmental pollution. Thus, using metakaolin/zeolite as an SCM and disposable glasses as fibers in concrete production may reduce environmental pollution and improve concrete's properties. To do so, in this paper, the flexural behavior of green concrete beams containing metakaolin/zeolite at 10 and 20% as SCMs at 28, 90, and 180 days in the Oman Sea tidal environment was examined by studying the effects of utilizing 0.5 and 1% disposable-glass fibers in ring and strip forms. The findings demonstrate that ring (RFs) and strip fibers (SFs) in green concrete reduce a beam's maximum load capacity (P ) by 31%, while RF and SF enhance green concrete beam flexural toughness by 8-20 times. Furthermore, the SF green concrete beams had 24% greater flexural toughness than RF beams at all ages. Finally, by improving the microstructure (by adding SCMs) and flexural behavior of marine concrete structures, in addition to increasing the load capacity and ductility of marine structures, the cracking and penetration of ions decreases; thus, the service life of the structures will increase.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16175912