Fabrication of Fe–Fe1−xO based 3D coplanar microsupercapacitors by electric discharge rusting of pure iron substrates

Iron oxides with advanced functional properties show great potential for applications in the fields of water splitting, drug delivery, sensors, batteries and supercapacitors. However, it is challenging to develop a simple and efficient strategy for fabricating patterned iron oxide based electrodes f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2023-09, Vol.13 (38), p.26995-27005
Hauptverfasser: Chen, Ri, Xu, Zehan, Xie, Weijun, Deng, Peiquan, Xu, Yunying, Xu, Lanying, Zhang, Guoying, Yang, Yong, Xie, Guangming, Zhitomirsky, Igor, Shi, Kaiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27005
container_issue 38
container_start_page 26995
container_title RSC advances
container_volume 13
creator Chen, Ri
Xu, Zehan
Xie, Weijun
Deng, Peiquan
Xu, Yunying
Xu, Lanying
Zhang, Guoying
Yang, Yong
Xie, Guangming
Zhitomirsky, Igor
Shi, Kaiyuan
description Iron oxides with advanced functional properties show great potential for applications in the fields of water splitting, drug delivery, sensors, batteries and supercapacitors. However, it is challenging to develop a simple and efficient strategy for fabricating patterned iron oxide based electrodes for supercapacitor applications. Herein, a facile, simple, scalable, binder-free, surfactant-free and conductive additive-free electric discharge rusting (EDR) technique is proposed to directly synthesize Fe1−xO oxide layer on a pure iron substrate. This new EDR strategy is successfully adopted to fabricate Fe–Fe1−xO integrative patterned electrodes and coplanar microsupercapacitors (CMSC) in one step. The CMSC devices with different geometries could be directly patterned by EDR, which is automatically controlled by a computer numerical control system. The fabricated Fe–Fe1−xO based 3D 2F-CMSC exhibits a maximum areal specific capacitance of 112.4 mF cm−2. Another important finding is the fabrication of 3D 2F-CMSC devices, which show good capacitive behavior at an ultra high scanning rate of 20 000 mV s−1. The results prove that EDR is a low-cost and versatile strategy for the scalable fabrication of high-performance patterned supercapacitor integrative electrodes and devices. Furthermore, it is a versatile technique which shows a great potential for development of next generation microelectronic devices, such as microbatteries and microsensors.
doi_str_mv 10.1039/d3ra04838a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10485656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863764530</sourcerecordid><originalsourceid>FETCH-LOGICAL-p308t-81eb01a95f346b0c4af29996e20b429b20c9fd03aef870e9d0b961dde248a4ac3</originalsourceid><addsrcrecordid>eNpdkL1OwzAUhSMkJFDpwhNYYmEp-C8mnhAqBJAqdYE5unZuilEaBztBdGNkhjfsk2B-FrjLGe7Rd3ROlh0yesKo0Ke1CEBlIQrYyfY5lWrGqdJ72TTGR5pO5Ywrtp9tSjDBWRic74hvSInb148S2fbt_WVJDESsibgk1vctdBDI2tng49hjsNCDdYMPkZgNwRbtkECkdtE-QFghCWMcXLf6ovZjQOJCioijiUOAAeNBtttAG3H6q5Psvry6m9_MFsvr2_nFYtYLWgyzgqGhDHTeCKkMtRIarrVWyKmRXBtOrW5qKgCb4oyirqnRitU1clmABCsm2fkPtx_NGmuLXcpvqz64NYRN5cFVfz-de6hW_rliab9c5SoRjn8JwT-NGIdqnUpimxZBP8aKF0qcKZkLmqxH_6yPfgxd6vftkoIpkYtPTFeGDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863431635</pqid></control><display><type>article</type><title>Fabrication of Fe–Fe1−xO based 3D coplanar microsupercapacitors by electric discharge rusting of pure iron substrates</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Chen, Ri ; Xu, Zehan ; Xie, Weijun ; Deng, Peiquan ; Xu, Yunying ; Xu, Lanying ; Zhang, Guoying ; Yang, Yong ; Xie, Guangming ; Zhitomirsky, Igor ; Shi, Kaiyuan</creator><creatorcontrib>Chen, Ri ; Xu, Zehan ; Xie, Weijun ; Deng, Peiquan ; Xu, Yunying ; Xu, Lanying ; Zhang, Guoying ; Yang, Yong ; Xie, Guangming ; Zhitomirsky, Igor ; Shi, Kaiyuan</creatorcontrib><description>Iron oxides with advanced functional properties show great potential for applications in the fields of water splitting, drug delivery, sensors, batteries and supercapacitors. However, it is challenging to develop a simple and efficient strategy for fabricating patterned iron oxide based electrodes for supercapacitor applications. Herein, a facile, simple, scalable, binder-free, surfactant-free and conductive additive-free electric discharge rusting (EDR) technique is proposed to directly synthesize Fe1−xO oxide layer on a pure iron substrate. This new EDR strategy is successfully adopted to fabricate Fe–Fe1−xO integrative patterned electrodes and coplanar microsupercapacitors (CMSC) in one step. The CMSC devices with different geometries could be directly patterned by EDR, which is automatically controlled by a computer numerical control system. The fabricated Fe–Fe1−xO based 3D 2F-CMSC exhibits a maximum areal specific capacitance of 112.4 mF cm−2. Another important finding is the fabrication of 3D 2F-CMSC devices, which show good capacitive behavior at an ultra high scanning rate of 20 000 mV s−1. The results prove that EDR is a low-cost and versatile strategy for the scalable fabrication of high-performance patterned supercapacitor integrative electrodes and devices. Furthermore, it is a versatile technique which shows a great potential for development of next generation microelectronic devices, such as microbatteries and microsensors.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra04838a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Devices ; Electric discharges ; Electrodes ; Iron oxides ; Numerical controls ; Rusting ; Substrates ; Supercapacitors ; Water splitting</subject><ispartof>RSC advances, 2023-09, Vol.13 (38), p.26995-27005</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485656/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485656/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27931,27932,53798,53800</link.rule.ids></links><search><creatorcontrib>Chen, Ri</creatorcontrib><creatorcontrib>Xu, Zehan</creatorcontrib><creatorcontrib>Xie, Weijun</creatorcontrib><creatorcontrib>Deng, Peiquan</creatorcontrib><creatorcontrib>Xu, Yunying</creatorcontrib><creatorcontrib>Xu, Lanying</creatorcontrib><creatorcontrib>Zhang, Guoying</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Xie, Guangming</creatorcontrib><creatorcontrib>Zhitomirsky, Igor</creatorcontrib><creatorcontrib>Shi, Kaiyuan</creatorcontrib><title>Fabrication of Fe–Fe1−xO based 3D coplanar microsupercapacitors by electric discharge rusting of pure iron substrates</title><title>RSC advances</title><description>Iron oxides with advanced functional properties show great potential for applications in the fields of water splitting, drug delivery, sensors, batteries and supercapacitors. However, it is challenging to develop a simple and efficient strategy for fabricating patterned iron oxide based electrodes for supercapacitor applications. Herein, a facile, simple, scalable, binder-free, surfactant-free and conductive additive-free electric discharge rusting (EDR) technique is proposed to directly synthesize Fe1−xO oxide layer on a pure iron substrate. This new EDR strategy is successfully adopted to fabricate Fe–Fe1−xO integrative patterned electrodes and coplanar microsupercapacitors (CMSC) in one step. The CMSC devices with different geometries could be directly patterned by EDR, which is automatically controlled by a computer numerical control system. The fabricated Fe–Fe1−xO based 3D 2F-CMSC exhibits a maximum areal specific capacitance of 112.4 mF cm−2. Another important finding is the fabrication of 3D 2F-CMSC devices, which show good capacitive behavior at an ultra high scanning rate of 20 000 mV s−1. The results prove that EDR is a low-cost and versatile strategy for the scalable fabrication of high-performance patterned supercapacitor integrative electrodes and devices. Furthermore, it is a versatile technique which shows a great potential for development of next generation microelectronic devices, such as microbatteries and microsensors.</description><subject>Chemistry</subject><subject>Devices</subject><subject>Electric discharges</subject><subject>Electrodes</subject><subject>Iron oxides</subject><subject>Numerical controls</subject><subject>Rusting</subject><subject>Substrates</subject><subject>Supercapacitors</subject><subject>Water splitting</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkL1OwzAUhSMkJFDpwhNYYmEp-C8mnhAqBJAqdYE5unZuilEaBztBdGNkhjfsk2B-FrjLGe7Rd3ROlh0yesKo0Ke1CEBlIQrYyfY5lWrGqdJ72TTGR5pO5Ywrtp9tSjDBWRic74hvSInb148S2fbt_WVJDESsibgk1vctdBDI2tng49hjsNCDdYMPkZgNwRbtkECkdtE-QFghCWMcXLf6ovZjQOJCioijiUOAAeNBtttAG3H6q5Psvry6m9_MFsvr2_nFYtYLWgyzgqGhDHTeCKkMtRIarrVWyKmRXBtOrW5qKgCb4oyirqnRitU1clmABCsm2fkPtx_NGmuLXcpvqz64NYRN5cFVfz-de6hW_rliab9c5SoRjn8JwT-NGIdqnUpimxZBP8aKF0qcKZkLmqxH_6yPfgxd6vftkoIpkYtPTFeGDA</recordid><startdate>20230908</startdate><enddate>20230908</enddate><creator>Chen, Ri</creator><creator>Xu, Zehan</creator><creator>Xie, Weijun</creator><creator>Deng, Peiquan</creator><creator>Xu, Yunying</creator><creator>Xu, Lanying</creator><creator>Zhang, Guoying</creator><creator>Yang, Yong</creator><creator>Xie, Guangming</creator><creator>Zhitomirsky, Igor</creator><creator>Shi, Kaiyuan</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230908</creationdate><title>Fabrication of Fe–Fe1−xO based 3D coplanar microsupercapacitors by electric discharge rusting of pure iron substrates</title><author>Chen, Ri ; Xu, Zehan ; Xie, Weijun ; Deng, Peiquan ; Xu, Yunying ; Xu, Lanying ; Zhang, Guoying ; Yang, Yong ; Xie, Guangming ; Zhitomirsky, Igor ; Shi, Kaiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p308t-81eb01a95f346b0c4af29996e20b429b20c9fd03aef870e9d0b961dde248a4ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Devices</topic><topic>Electric discharges</topic><topic>Electrodes</topic><topic>Iron oxides</topic><topic>Numerical controls</topic><topic>Rusting</topic><topic>Substrates</topic><topic>Supercapacitors</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ri</creatorcontrib><creatorcontrib>Xu, Zehan</creatorcontrib><creatorcontrib>Xie, Weijun</creatorcontrib><creatorcontrib>Deng, Peiquan</creatorcontrib><creatorcontrib>Xu, Yunying</creatorcontrib><creatorcontrib>Xu, Lanying</creatorcontrib><creatorcontrib>Zhang, Guoying</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Xie, Guangming</creatorcontrib><creatorcontrib>Zhitomirsky, Igor</creatorcontrib><creatorcontrib>Shi, Kaiyuan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ri</au><au>Xu, Zehan</au><au>Xie, Weijun</au><au>Deng, Peiquan</au><au>Xu, Yunying</au><au>Xu, Lanying</au><au>Zhang, Guoying</au><au>Yang, Yong</au><au>Xie, Guangming</au><au>Zhitomirsky, Igor</au><au>Shi, Kaiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Fe–Fe1−xO based 3D coplanar microsupercapacitors by electric discharge rusting of pure iron substrates</atitle><jtitle>RSC advances</jtitle><date>2023-09-08</date><risdate>2023</risdate><volume>13</volume><issue>38</issue><spage>26995</spage><epage>27005</epage><pages>26995-27005</pages><eissn>2046-2069</eissn><abstract>Iron oxides with advanced functional properties show great potential for applications in the fields of water splitting, drug delivery, sensors, batteries and supercapacitors. However, it is challenging to develop a simple and efficient strategy for fabricating patterned iron oxide based electrodes for supercapacitor applications. Herein, a facile, simple, scalable, binder-free, surfactant-free and conductive additive-free electric discharge rusting (EDR) technique is proposed to directly synthesize Fe1−xO oxide layer on a pure iron substrate. This new EDR strategy is successfully adopted to fabricate Fe–Fe1−xO integrative patterned electrodes and coplanar microsupercapacitors (CMSC) in one step. The CMSC devices with different geometries could be directly patterned by EDR, which is automatically controlled by a computer numerical control system. The fabricated Fe–Fe1−xO based 3D 2F-CMSC exhibits a maximum areal specific capacitance of 112.4 mF cm−2. Another important finding is the fabrication of 3D 2F-CMSC devices, which show good capacitive behavior at an ultra high scanning rate of 20 000 mV s−1. The results prove that EDR is a low-cost and versatile strategy for the scalable fabrication of high-performance patterned supercapacitor integrative electrodes and devices. Furthermore, it is a versatile technique which shows a great potential for development of next generation microelectronic devices, such as microbatteries and microsensors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ra04838a</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2023-09, Vol.13 (38), p.26995-27005
issn 2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10485656
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Chemistry
Devices
Electric discharges
Electrodes
Iron oxides
Numerical controls
Rusting
Substrates
Supercapacitors
Water splitting
title Fabrication of Fe–Fe1−xO based 3D coplanar microsupercapacitors by electric discharge rusting of pure iron substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Fe%E2%80%93Fe1%E2%88%92xO%20based%203D%20coplanar%20microsupercapacitors%20by%20electric%20discharge%20rusting%20of%20pure%20iron%20substrates&rft.jtitle=RSC%20advances&rft.au=Chen,%20Ri&rft.date=2023-09-08&rft.volume=13&rft.issue=38&rft.spage=26995&rft.epage=27005&rft.pages=26995-27005&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra04838a&rft_dat=%3Cproquest_pubme%3E2863764530%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863431635&rft_id=info:pmid/&rfr_iscdi=true