Biomass and enzymatic activities of marine bacteria in the presence of multiple metals
Marine environments are a repository for metals, and humans have enhanced this phenomenon over the years. Heavy metals are notoriously toxic due to their ability to biomagnify in the food chain and interact with cellular components. Nevertheless, some bacteria have physiological mechanisms that enab...
Gespeichert in:
Veröffentlicht in: | Brazilian journal of microbiology 2023-09, Vol.54 (3), p.1523-1532 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Marine environments are a repository for metals, and humans have enhanced this phenomenon over the years. Heavy metals are notoriously toxic due to their ability to biomagnify in the food chain and interact with cellular components. Nevertheless, some bacteria have physiological mechanisms that enable them to survive in impacted environments. This characteristic makes them important as biotechnological tools for environmental remediation. Thus, we isolated a bacterial consortium in Guanabara Bay (Brazil), a place with a long metal pollution history. To test the growth efficiency of this consortium in Cu–Zn-Pb-Ni–Cd medium, we measured the activity of key enzymes of microbial activity (esterases and dehydrogenase) under acidic (4.0) and neutral pH conditions, as well as the number of living cells, biopolymer production, and changes in microbial composition during metal exposure. Additionally, we calculated the predicted physiology based on microbial taxonomy. During the assay, a slight modification in bacterial composition was observed, with low abundance changes and little production of carbohydrates.
Oceanobacillus
chironomi
,
Halolactibacillus miurensis
, and
Alkaliphilus oremlandii
were predominant in pH 7, despite
O. chironomi
and
Tissierella creatinophila
in pH 4, and
T. creatinophila
in Cu–Zn-Pb-Ni–Cd treatment. The metabolism represented by esterases and dehydrogenase enzymes suggested bacterial investment in esterases to capture nutrients and meet the energy demand in an environment with metal stress. Their metabolism potentially shifted to chemoheterotrophy and recycling nitrogenous compounds. Moreover, concomitantly, bacteria produced more lipids and proteins, suggesting extracellular polymeric substance production and growth in a metal-stressed environment. The isolated consortium showed promise for bioremediation of multimetal contamination and could be a valuable tool in future bioremediation programs. |
---|---|
ISSN: | 1517-8382 1678-4405 |
DOI: | 10.1007/s42770-023-00993-5 |