Genetically encoded RNA-based sensors with Pepper fluorogenic aptamer

Abstract Sensors to measure the abundance and signaling of intracellular molecules are crucial for understanding their physiological functions. Although conventional fluorescent protein-based sensors have been designed, RNA-based sensors are promising imaging tools. Numerous RNA-based sensors have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2023-09, Vol.51 (16), p.8322-8336
Hauptverfasser: Chen, Zhenyin, Chen, Wei, Reheman, Zhayila, Jiang, Haodong, Wu, Jiahui, Li, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Sensors to measure the abundance and signaling of intracellular molecules are crucial for understanding their physiological functions. Although conventional fluorescent protein-based sensors have been designed, RNA-based sensors are promising imaging tools. Numerous RNA-based sensors have been developed. These sensors typically contain RNA G-quadruplex (RG4) motifs and thus may be suboptimal in living cells. Here we describe RNA-based sensors based on Pepper, a fluorogenic RNA without an RG4 motif. With Pepper, we engineered various sensors for metabolites, synthetic compounds, proteins and metal ions in vitro and in living cells. In addition, these sensors show high activation and selectivity, demonstrating their universality and robustness. In the case of sensors responding to S-adenosylmethionine (SAM), a metabolite produced by methionine adenosyltransferase (MATase), we showed that our sensors exhibited positively correlated fluorescence responding to different SAM levels. Importantly, we revealed the SAM biosynthesis pathway and monitored MATase activity and gene expression spatiotemporally in living individual human cells. Additionally, we constructed a ratiometric SAM sensor to determine the inhibition efficacy of a MATase inhibitor in living cells. Together, these sensors comprising Pepper provide a useful platform for imaging diverse cellular targets and their signaling pathway. Graphical Abstract Graphical Abstract
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkad620