Clinical Use of an Exposure, Symptom, and Spirometry Algorithm to Stratify Smokers into COPD Risk Phenotypes: A Case Finding Study Combined with Smoking Cessation Counseling

Chronic obstructive pulmonary disease (COPD) case-finding aims to detect airflow obstruction in symptomatic smokers and ex-smokers. We used a clinical algorithm including smoking, symptoms, and spirometry to classify smokers into COPD risk phenotypes. In addition, we evaluated the acceptability and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chronic obstructive pulmonary diseases 2023-01, Vol.10 (3), p.248-258
Hauptverfasser: Bohadana, Abraham, Rokach, Ariel, Wild, Pascal, Kotek, Ofir, Shuali, Chen-Chen, Azulai, Hava, Izbicki, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic obstructive pulmonary disease (COPD) case-finding aims to detect airflow obstruction in symptomatic smokers and ex-smokers. We used a clinical algorithm including smoking, symptoms, and spirometry to classify smokers into COPD risk phenotypes. In addition, we evaluated the acceptability and effectiveness of including smoking cessation advice in the case-finding intervention. Smoking, symptoms, and spirometry abnormalities (airflow obstruction: forced expiratory volume in 1 second [FEV ] to forced vital capacity [FVC]
ISSN:2372-952X
2372-952X
DOI:10.15326/jcopdf.2022.0368