Mechanistic Investigation of the Nickel-Catalyzed Transfer Hydrocyanation of Alkynes
The implementation of HCN-free transfer hydrocyanation reactions on laboratory scales has recently been achieved by using HCN donor reagents under nickel- and Lewis acid co-catalysis. More recently, malononitrile-based HCN donor reagents were shown to undergo the C(sp3)–CN bond activation by the ni...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2023-09, Vol.13 (17), p.11548-11555 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The implementation of HCN-free transfer hydrocyanation reactions on laboratory scales has recently been achieved by using HCN donor reagents under nickel- and Lewis acid co-catalysis. More recently, malononitrile-based HCN donor reagents were shown to undergo the C(sp3)–CN bond activation by the nickel catalyst in the absence of Lewis acids. However, there is a lack of detailed mechanistic understanding of the challenging C(sp3)–CN bond cleavage step. In this work, in-depth kinetic and computational studies using alkynes as substrates were used to elucidate the overall reaction mechanism of this transfer hydrocyanation, with a particular focus on the activation of the C(sp3)–CN bond to generate the active H–Ni–CN transfer hydrocyanation catalyst. Comparisons of experimentally and computationally derived 13C kinetic isotope effect data support a direct oxidative addition mechanism of the nickel catalyst into the C(sp3)–CN bond facilitated by the coordination of the second nitrile group to the nickel catalyst. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.3c02977 |