In vitro studies on the pharmacological potential, anti-tumor, antimicrobial, and acetylcholinesterase inhibitory activity of marine-derived Bacillus velezensis AG6 exopolysaccharide

In the current study, AG6 was isolated from sediment samples in the Red Sea, identified by traditional microbiological techniques and phylogenetic 16S rRNA sequences. Among eight isolates screened for exopolysaccharide (EPS) production, the R6 isolate was the highest producer with a significant frac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2023-09, Vol.13 (38), p.26406-26417
Hauptverfasser: Alharbi, Maha A, Alrehaili, Amani A, Albureikan, Mona Othman I, Gharib, Amal F, Daghistani, Hussam, Bakhuraysah, Maha M, Aloraini, Ghfren S, Bazuhair, Mohammed A, Alhuthali, Hayaa M, Ghareeb, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the current study, AG6 was isolated from sediment samples in the Red Sea, identified by traditional microbiological techniques and phylogenetic 16S rRNA sequences. Among eight isolates screened for exopolysaccharide (EPS) production, the R6 isolate was the highest producer with a significant fraction of EPS (EPSF6, 5.79 g L ). The EPSF6 molecule was found to have a molecular weight (Mw) of 2.7 × 10 g mol and a number average (Mn) of 2.6 × 10 g mol when it was analyzed using GPC. The FTIR spectrum indicated no sulfate but uronic acid (43.8%). According to HPLC, the EPSF6 fraction's monosaccharides were xylose, galactose, and galacturonic acid in a molar ratio of 2.0 : 0.5 : 2.0. DPPH, H O , and ABTS tests assessed EPSF6's antioxidant capabilities at 100, 300, 500, 1000, and 1500 μg mL for 15, 60, 45, and 60 minutes. The overall antioxidant activities were dose- and time-dependently increased, and improved by increasing concentrations from 100 to 1500 μg mL after 60 minutes and found to be 91.34 ± 1.1%, 80.20 ± 1.4% and 75.28 ± 1.1% respectively. Next, EPSF6 displayed considerable inhibitory activity toward the proliferation of six cancerous cell lines. Anti-inflammatory tests were performed using lipoxygenase (5-LOX) and cyclooxygenase (COX-2). An MTP turbidity assay method was applied to show the ability of EPSF6 to inhibit Gram-positive bacteria, Gram-negative bacteria, and antibiofilm formation. Together, this study sheds light on the potential pharmacological applications of a secondary metabolite produced by marine AG6. Its expected impact on human health will increase as more research and studies are conducted globally.
ISSN:2046-2069
2046-2069
DOI:10.1039/d3ra04009g