Solution Blow-Spun Poly (Ethylene Oxide)-Polysulfone Bicomponent Fibers—Characterization of Morphology, Structure, and Properties

Solution blow spinning was used to prepare nonwoven bicomponent fibers constituted by poly (ethylene oxide)-Polysulfone (PEO-PSF). As a new material, deep characterization was carried out to have a database to understand final performance regarding its multiple functions as a potential material for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-08, Vol.15 (16), p.3402
Hauptverfasser: Domínguez-Herrera, José Ernesto, Maldonado-Saavedra, Octavio, Grande-Ramírez, José Roberto, Guarneros-Nolasco, Luis Rolando, González-Benito, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solution blow spinning was used to prepare nonwoven bicomponent fibers constituted by poly (ethylene oxide)-Polysulfone (PEO-PSF). As a new material, deep characterization was carried out to have a database to understand final performance regarding its multiple functions as a potential material for biomedical applications. The morphology was studied by field emission scanning electron and transmission electron microscopy and optical profilometry. Structural characterization was carried out by Fourier transform infrared spectroscopy and thermal degradation by thermogravimetric analysis. Additionally, wettability and mechanical behavior were studied by contact angle measurements and tensile tests, respectively. The bicomponent material was constituted of fibers with a structure mainly described by a core-shell structure, where the PSF phase is located at the center of the fibers, and the PEO phase is mainly located at the outer parts of the fibers, leading to a kind of shell wall. The study of possible interactions between different phases revealed them to be lacking, pointing to the presence of an interface core/shell more than an interphase. The morphology and roughness of the bicomponent material improved its wettability when glycerol was tested. Indeed, its mechanical properties were enhanced due to the PSF core provided as reinforcement material.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15163402