Mechanism of the extremely high duplex-forming ability of oligonucleotides modified with N-tert-butylguanidine- or N-tert-butyl-N′- methylguanidine-bridged nucleic acids
Abstract Antisense oligonucleotides (ASOs) are becoming a promising class of drugs for treating various diseases. Over the past few decades, many modified nucleic acids have been developed for application to ASOs, aiming to enhance their duplex-forming ability toward cognate mRNA and improve their s...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2023-08, Vol.51 (15), p.7749-7761 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Antisense oligonucleotides (ASOs) are becoming a promising class of drugs for treating various diseases. Over the past few decades, many modified nucleic acids have been developed for application to ASOs, aiming to enhance their duplex-forming ability toward cognate mRNA and improve their stability against enzymatic degradations. Modulating the sugar conformation of nucleic acids by substituting an electron-withdrawing group at the 2′-position or incorporating a 2′,4′-bridging structure is a common approach for enhancing duplex-forming ability. Here, we report on incorporating an N-tert-butylguanidinium group at the 2′,4′-bridging structure, which greatly enhances duplex-forming ability because of its interactions with the minor groove. Our results indicated that hydrophobic substituents fitting the grooves of duplexes also have great potential to increase duplex-forming ability.
Graphical Abstract
Graphical Abstract |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gkad608 |