PEARS: A Web Tool for Fitting Time-Resolved Photoluminescence Decays of Perovskite Materials
Time-resolved photoluminescence (TRPL) is a powerful tool to investigate charge carrier recombination processes in emissive materials. Perovskite materials are extremely promising for applications in solar cells; however, the interpretation of their TRPL is arduous due to the complicated nature of t...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2023-08, Vol.63 (15), p.4477-4482 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-resolved photoluminescence (TRPL) is a powerful tool to investigate charge carrier recombination processes in emissive materials. Perovskite materials are extremely promising for applications in solar cells; however, the interpretation of their TRPL is arduous due to the complicated nature of the recombination processes occurring in these materials. We present here the PErovskite cArrier Recombination Simulator (PEARS) web tool for effortlessly and quickly fitting TRPL of perovskite materials using advanced charge carrier recombination models, allowing for the extraction of recombination rate constants and trap state concentration. PEARS is flexible and can adapt to different situations, by ignoring recombination processes or fixing known parameters (e.g., the doping concentration). The tool is publicly available at https://pears-tool.herokuapp.com. |
---|---|
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/acs.jcim.3c00217 |