Crossmodal visual predictions elicit spatially specific early visual cortex activity but later than real visual stimuli

Previous studies have indicated that crossmodal visual predictions are instrumental in controlling early visual cortex activity. The exact time course and spatial precision of such crossmodal top-down influences on the visual cortex have been unknown. In the present study, participants were exposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2023-09, Vol.378 (1886), p.20220339
Hauptverfasser: Stange, Liesa, Ossandón, José P, Röder, Brigitte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies have indicated that crossmodal visual predictions are instrumental in controlling early visual cortex activity. The exact time course and spatial precision of such crossmodal top-down influences on the visual cortex have been unknown. In the present study, participants were exposed to audiovisual combinations comprising one of two sounds and a Gabor patch either in the top left or in the bottom right visual field. Event-related potentials (ERPs) were recorded to these frequent crossmodal combinations (standards) as well as to trials in which the visual stimulus was omitted (omissions) or the visual and auditory stimuli were recombined (deviants). Standards and deviants elicited an ERP between 50 and 100 ms of opposite polarity known as the C1 effect commonly associated with retinotopic processing in early visual cortex. By contrast, a C1 effect was not observed in omission trials. Spatially specific omission and mismatch effects (deviants minus standards) started only later with a latency of 230 ms and 170 ms, respectively. These results suggest that crossmodal visual predictions control visual cortex activity in a spatially specific manner. However, visual predictions do not modulate visual cortex activity with the same timing as visual stimulation activates these areas but rather seem to involve distinct neural mechanisms. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
ISSN:0962-8436
1471-2970
1471-2970
DOI:10.1098/rstb.2022.0339