Metformin-Induced Receptor Turnover Alters Antibody Accumulation in HER-Expressing Tumors

Metformin has effects beyond its antihyperglycemic properties, including altering the localization of membrane receptors in cancer cells. Metformin decreases human epidermal growth factor receptor (HER) membrane density. Depletion of cell-surface HER decreases antibody-tumor binding for imaging and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Nuclear Medicine 2023-08, Vol.64 (8), p.1195-1202
Hauptverfasser: Panikar, Sandeep Surendra, Keltee, Nai, Berry, Na-Keysha, Shmuel, Shayla, Fisher, Zachary T, Brown, Emma, Zidel, Abbey, Mabry, Alex, Pereira, Patrícia M R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metformin has effects beyond its antihyperglycemic properties, including altering the localization of membrane receptors in cancer cells. Metformin decreases human epidermal growth factor receptor (HER) membrane density. Depletion of cell-surface HER decreases antibody-tumor binding for imaging and therapeutic approaches. Here, we used HER-targeted PET to annotate antibody-tumor binding in mice treated with metformin. Small-animal PET annotated antibody binding in HER-expressing xenografts on administration of an acute versus a daily dose schedule of metformin. Analyses at the protein level in the total, membrane, and internalized cell extracts were performed to determine receptor endocytosis, HER surface and internalized protein levels, and HER phosphorylation. At 24 h after injection of radiolabeled anti-HER antibodies, control tumors had higher antibody accumulation than tumors treated with an acute dose of metformin. These differences were temporal, and by 72 h, tumor uptake in acute cohorts was similar to uptake in control. Additional PET imaging revealed a sustained decrease in tumor uptake on daily metformin treatment compared with control and acute metformin cohorts. The effects of metformin on membrane HER were reversible, and after its removal, antibody-tumor binding was restored. The time- and dose-dependent effects of metformin-induced HER depletion observed preclinically were validated with immunofluorescence, fractionation, and protein analysis cell assays. The findings that metformin decreases cell-surface HER receptors and reduces antibody-tumor binding may have significant implications for the use of antibodies targeting these receptors in cancer treatment and molecular imaging.
ISSN:0161-5505
1535-5667
2159-662X
DOI:10.2967/jnumed.122.265248