Facial expression recognition on partially occluded faces using component based ensemble stacked CNN

Facial Expression Recognition (FER) is the basis for many applications including human-computer interaction and surveillance. While developing such applications, it is imperative to understand human emotions for better interaction with machines. Among many FER models developed so far, Ensemble Stack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive neurodynamics 2023-08, Vol.17 (4), p.985-1008
Hauptverfasser: Bellamkonda, Sivaiah, Gopalan, N. P., Mala, C., Settipalli, Lavanya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1008
container_issue 4
container_start_page 985
container_title Cognitive neurodynamics
container_volume 17
creator Bellamkonda, Sivaiah
Gopalan, N. P.
Mala, C.
Settipalli, Lavanya
description Facial Expression Recognition (FER) is the basis for many applications including human-computer interaction and surveillance. While developing such applications, it is imperative to understand human emotions for better interaction with machines. Among many FER models developed so far, Ensemble Stacked Convolution Neural Networks (ES-CNN) showed an empirical impact in improving the performance of FER on static images. However, the existing ES-CNN based FER models trained with features extracted from the entire face, are unable to address the issues of ambient parameters such as pose, illumination, occlusions. To mitigate the problem of reduced performance of ES-CNN on partially occluded faces, a Component based ES-CNN (CES-CNN) is proposed. CES-CNN applies ES-CNN on action units of individual face components such as eyes, eyebrows, nose, cheek, mouth, and glabella as one subnet of the network. Max-Voting based ensemble classifier is used to ensemble the decisions of the subnets in order to obtain the optimized recognition accuracy. The proposed CES-CNN is validated by conducting experiments on benchmark datasets and the performance is compared with the state-of-the-art models. It is observed from the experimental results that the proposed model has a significant enhancement in the recognition accuracy compared to the existing models.
doi_str_mv 10.1007/s11571-022-09879-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10374495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918681953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-35546a6b05e5a6536a0d08f35618d85afc8b1edfbd8218c65dab30ddcfb6ae373</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EoqXwAhxQJC5cAnZsJ84JoRUtSFW5tGfLsSdLSmIHT1Kxb8-0W5aWA5IlWzPf_J6Zn7HXgr8XnDcfUAjdiJJXVclb07Tl7gk7FoZCirft08Pb8CP2AvGac10boZ6zI9noquJSHbNw6vzgxgJ-zRkQhxSLDD5t47DcvunMLi9EjLsieT-uAULROw9YrDjEbeHTNKcIcSk6h5SDiDB1IxS4OP-DApuLi5fsWe9GhFf39wm7Ov18uflSnn87-7r5dF56JcVSSq1V7eqOa9Cu1rJ2PHDTS10LE4x2vTedgNB3wVTC-FoH10kegu-72oFs5An7uNed126C4Kmr7EY752FyeWeTG-zjTBy-2226sYLLRqlWk8K7e4Wcfq6Ai50G9DCOLkJa0VZG0W6laiWhb_9Br9OaI81nq1YY2jTpEVXtKZ8TYob-0I3g9tZFu3fRkov2zkW7o6I3D-c4lPyxjQC5B5BScQv579__kf0NL1KrGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918681953</pqid></control><display><type>article</type><title>Facial expression recognition on partially occluded faces using component based ensemble stacked CNN</title><source>ProQuest Central (Alumni Edition)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Bellamkonda, Sivaiah ; Gopalan, N. P. ; Mala, C. ; Settipalli, Lavanya</creator><creatorcontrib>Bellamkonda, Sivaiah ; Gopalan, N. P. ; Mala, C. ; Settipalli, Lavanya</creatorcontrib><description>Facial Expression Recognition (FER) is the basis for many applications including human-computer interaction and surveillance. While developing such applications, it is imperative to understand human emotions for better interaction with machines. Among many FER models developed so far, Ensemble Stacked Convolution Neural Networks (ES-CNN) showed an empirical impact in improving the performance of FER on static images. However, the existing ES-CNN based FER models trained with features extracted from the entire face, are unable to address the issues of ambient parameters such as pose, illumination, occlusions. To mitigate the problem of reduced performance of ES-CNN on partially occluded faces, a Component based ES-CNN (CES-CNN) is proposed. CES-CNN applies ES-CNN on action units of individual face components such as eyes, eyebrows, nose, cheek, mouth, and glabella as one subnet of the network. Max-Voting based ensemble classifier is used to ensemble the decisions of the subnets in order to obtain the optimized recognition accuracy. The proposed CES-CNN is validated by conducting experiments on benchmark datasets and the performance is compared with the state-of-the-art models. It is observed from the experimental results that the proposed model has a significant enhancement in the recognition accuracy compared to the existing models.</description><identifier>ISSN: 1871-4080</identifier><identifier>EISSN: 1871-4099</identifier><identifier>DOI: 10.1007/s11571-022-09879-y</identifier><identifier>PMID: 37522034</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Artificial neural networks ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Classification ; Cognitive Psychology ; Computer Science ; Deep learning ; Discriminant analysis ; Emotions ; Face recognition ; Human-computer interaction ; Machine learning ; Neural networks ; Neurosciences ; Pattern recognition ; Research Article</subject><ispartof>Cognitive neurodynamics, 2023-08, Vol.17 (4), p.985-1008</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-35546a6b05e5a6536a0d08f35618d85afc8b1edfbd8218c65dab30ddcfb6ae373</citedby><cites>FETCH-LOGICAL-c431t-35546a6b05e5a6536a0d08f35618d85afc8b1edfbd8218c65dab30ddcfb6ae373</cites><orcidid>0000-0001-6948-3483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374495/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918681953?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,21393,21394,27929,27930,33535,33536,33749,33750,41493,42562,43664,43810,51324,53796,53798,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37522034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellamkonda, Sivaiah</creatorcontrib><creatorcontrib>Gopalan, N. P.</creatorcontrib><creatorcontrib>Mala, C.</creatorcontrib><creatorcontrib>Settipalli, Lavanya</creatorcontrib><title>Facial expression recognition on partially occluded faces using component based ensemble stacked CNN</title><title>Cognitive neurodynamics</title><addtitle>Cogn Neurodyn</addtitle><addtitle>Cogn Neurodyn</addtitle><description>Facial Expression Recognition (FER) is the basis for many applications including human-computer interaction and surveillance. While developing such applications, it is imperative to understand human emotions for better interaction with machines. Among many FER models developed so far, Ensemble Stacked Convolution Neural Networks (ES-CNN) showed an empirical impact in improving the performance of FER on static images. However, the existing ES-CNN based FER models trained with features extracted from the entire face, are unable to address the issues of ambient parameters such as pose, illumination, occlusions. To mitigate the problem of reduced performance of ES-CNN on partially occluded faces, a Component based ES-CNN (CES-CNN) is proposed. CES-CNN applies ES-CNN on action units of individual face components such as eyes, eyebrows, nose, cheek, mouth, and glabella as one subnet of the network. Max-Voting based ensemble classifier is used to ensemble the decisions of the subnets in order to obtain the optimized recognition accuracy. The proposed CES-CNN is validated by conducting experiments on benchmark datasets and the performance is compared with the state-of-the-art models. It is observed from the experimental results that the proposed model has a significant enhancement in the recognition accuracy compared to the existing models.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Classification</subject><subject>Cognitive Psychology</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Emotions</subject><subject>Face recognition</subject><subject>Human-computer interaction</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Pattern recognition</subject><subject>Research Article</subject><issn>1871-4080</issn><issn>1871-4099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhi0EoqXwAhxQJC5cAnZsJ84JoRUtSFW5tGfLsSdLSmIHT1Kxb8-0W5aWA5IlWzPf_J6Zn7HXgr8XnDcfUAjdiJJXVclb07Tl7gk7FoZCirft08Pb8CP2AvGac10boZ6zI9noquJSHbNw6vzgxgJ-zRkQhxSLDD5t47DcvunMLi9EjLsieT-uAULROw9YrDjEbeHTNKcIcSk6h5SDiDB1IxS4OP-DApuLi5fsWe9GhFf39wm7Ov18uflSnn87-7r5dF56JcVSSq1V7eqOa9Cu1rJ2PHDTS10LE4x2vTedgNB3wVTC-FoH10kegu-72oFs5An7uNed126C4Kmr7EY752FyeWeTG-zjTBy-2226sYLLRqlWk8K7e4Wcfq6Ai50G9DCOLkJa0VZG0W6laiWhb_9Br9OaI81nq1YY2jTpEVXtKZ8TYob-0I3g9tZFu3fRkov2zkW7o6I3D-c4lPyxjQC5B5BScQv579__kf0NL1KrGA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Bellamkonda, Sivaiah</creator><creator>Gopalan, N. P.</creator><creator>Mala, C.</creator><creator>Settipalli, Lavanya</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6948-3483</orcidid></search><sort><creationdate>20230801</creationdate><title>Facial expression recognition on partially occluded faces using component based ensemble stacked CNN</title><author>Bellamkonda, Sivaiah ; Gopalan, N. P. ; Mala, C. ; Settipalli, Lavanya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-35546a6b05e5a6536a0d08f35618d85afc8b1edfbd8218c65dab30ddcfb6ae373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Classification</topic><topic>Cognitive Psychology</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Emotions</topic><topic>Face recognition</topic><topic>Human-computer interaction</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Pattern recognition</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellamkonda, Sivaiah</creatorcontrib><creatorcontrib>Gopalan, N. P.</creatorcontrib><creatorcontrib>Mala, C.</creatorcontrib><creatorcontrib>Settipalli, Lavanya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cognitive neurodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellamkonda, Sivaiah</au><au>Gopalan, N. P.</au><au>Mala, C.</au><au>Settipalli, Lavanya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facial expression recognition on partially occluded faces using component based ensemble stacked CNN</atitle><jtitle>Cognitive neurodynamics</jtitle><stitle>Cogn Neurodyn</stitle><addtitle>Cogn Neurodyn</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>17</volume><issue>4</issue><spage>985</spage><epage>1008</epage><pages>985-1008</pages><issn>1871-4080</issn><eissn>1871-4099</eissn><abstract>Facial Expression Recognition (FER) is the basis for many applications including human-computer interaction and surveillance. While developing such applications, it is imperative to understand human emotions for better interaction with machines. Among many FER models developed so far, Ensemble Stacked Convolution Neural Networks (ES-CNN) showed an empirical impact in improving the performance of FER on static images. However, the existing ES-CNN based FER models trained with features extracted from the entire face, are unable to address the issues of ambient parameters such as pose, illumination, occlusions. To mitigate the problem of reduced performance of ES-CNN on partially occluded faces, a Component based ES-CNN (CES-CNN) is proposed. CES-CNN applies ES-CNN on action units of individual face components such as eyes, eyebrows, nose, cheek, mouth, and glabella as one subnet of the network. Max-Voting based ensemble classifier is used to ensemble the decisions of the subnets in order to obtain the optimized recognition accuracy. The proposed CES-CNN is validated by conducting experiments on benchmark datasets and the performance is compared with the state-of-the-art models. It is observed from the experimental results that the proposed model has a significant enhancement in the recognition accuracy compared to the existing models.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37522034</pmid><doi>10.1007/s11571-022-09879-y</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6948-3483</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1871-4080
ispartof Cognitive neurodynamics, 2023-08, Vol.17 (4), p.985-1008
issn 1871-4080
1871-4099
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10374495
source ProQuest Central (Alumni Edition); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; ProQuest Central UK/Ireland; PubMed Central; ProQuest Central
subjects Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Biochemistry
Biomedical and Life Sciences
Biomedicine
Classification
Cognitive Psychology
Computer Science
Deep learning
Discriminant analysis
Emotions
Face recognition
Human-computer interaction
Machine learning
Neural networks
Neurosciences
Pattern recognition
Research Article
title Facial expression recognition on partially occluded faces using component based ensemble stacked CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facial%20expression%20recognition%20on%20partially%20occluded%20faces%20using%20component%20based%20ensemble%20stacked%20CNN&rft.jtitle=Cognitive%20neurodynamics&rft.au=Bellamkonda,%20Sivaiah&rft.date=2023-08-01&rft.volume=17&rft.issue=4&rft.spage=985&rft.epage=1008&rft.pages=985-1008&rft.issn=1871-4080&rft.eissn=1871-4099&rft_id=info:doi/10.1007/s11571-022-09879-y&rft_dat=%3Cproquest_pubme%3E2918681953%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918681953&rft_id=info:pmid/37522034&rfr_iscdi=true