Facial expression recognition on partially occluded faces using component based ensemble stacked CNN

Facial Expression Recognition (FER) is the basis for many applications including human-computer interaction and surveillance. While developing such applications, it is imperative to understand human emotions for better interaction with machines. Among many FER models developed so far, Ensemble Stack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive neurodynamics 2023-08, Vol.17 (4), p.985-1008
Hauptverfasser: Bellamkonda, Sivaiah, Gopalan, N. P., Mala, C., Settipalli, Lavanya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Facial Expression Recognition (FER) is the basis for many applications including human-computer interaction and surveillance. While developing such applications, it is imperative to understand human emotions for better interaction with machines. Among many FER models developed so far, Ensemble Stacked Convolution Neural Networks (ES-CNN) showed an empirical impact in improving the performance of FER on static images. However, the existing ES-CNN based FER models trained with features extracted from the entire face, are unable to address the issues of ambient parameters such as pose, illumination, occlusions. To mitigate the problem of reduced performance of ES-CNN on partially occluded faces, a Component based ES-CNN (CES-CNN) is proposed. CES-CNN applies ES-CNN on action units of individual face components such as eyes, eyebrows, nose, cheek, mouth, and glabella as one subnet of the network. Max-Voting based ensemble classifier is used to ensemble the decisions of the subnets in order to obtain the optimized recognition accuracy. The proposed CES-CNN is validated by conducting experiments on benchmark datasets and the performance is compared with the state-of-the-art models. It is observed from the experimental results that the proposed model has a significant enhancement in the recognition accuracy compared to the existing models.
ISSN:1871-4080
1871-4099
DOI:10.1007/s11571-022-09879-y