A framework for individualized splice-switching oligonucleotide therapy
Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases 1 , but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individua...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2023-07, Vol.619 (7971), p.828-836 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases
1
, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder
2
,
3
, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were ‘probably’ or ‘possibly’ amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.
Whole-genome sequencing analyses in a cohort of individuals with ataxia-telangiectasia are used to identify genetic variants that might be amenable to treatment with splice-switching antisense oligonucleotides (ASOs), and develop ASOs with therapeutic potential. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/s41586-023-06277-0 |